Memcached
Memcached 是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载。它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态、数据库驱动网站的速度。Memcached基于一个存储键/值对的hashmap。其守护进程(daemon )是用C写的,但是客户端可以用任何语言来编写,并通过memcached协议与守护进程通信。
安装
yum -y install libevent-devel
wget http://memcached.org/latest
tar -zxvf memcached-1.x.x.tar.gz
cd memcached-1.x.x
./configure && make && make test && sudo make install
启动Memcached
memcached
-
d
-
m
10
-
u root
-
l
10.211
.
55.4
-
p 12000
-
c
256
-
P
/
tmp
/
memcached.pid
参数说明:
-
d 是启动一个守护进程
-
m 是分配给Memcache使用的内存数量,单位是MB
-
u 是运行Memcache的用户
-
l 是监听的服务器IP地址
-
p 是设置Memcache监听的端口,最好是
1024
以上的端口
-
c 选项是最大运行的并发连接数,默认是
1024
,按照你服务器的负载量来设定
-
P 是设置保存Memcache的pid文件
命令:
存储命令:
set
/
add
/
replace
/
append
/
prepend
/
cas
获取命令: get
/
gets
其他命令: delete
/
stats..
Python操作Memcached
1、python操作Memcached使用Python
-
memcached模块
安装模块:https:
/
/
pypi.python.org
/
pypi
/
python
-
memcached
wget https://pypi.python.org/packages/f7/62/14b2448cfb04427366f24104c9da97cf8ea380d7258a3233f066a951a8d8/python-memcached-1.58.tar.gz
tar fx python-memcached-1.58.tar.gz
cd python-memcached-1.58
python3 setup.py install
先启动memcached
[[email protected] bin]# ps -ef|grep mem
root 7081 1 0 11:51 ? 00:00:00 memcached -d -m 10 -u root -l 10.211.55.5 -p 12000 -c 256 -P /tmp/memcached.pid
root 7123 4046 0 11:51 pts/1 00:00:00 grep mem
1、第一次操作
1 import memcache 2 3 mc = memcache.Client([‘10.211.55.5:12000‘], debug=True) 4 mc.set("foo", "bar") 5 ret = mc.get(‘foo‘) 6 print (ret) 7
2、天生支持集群
python-memcached模块原生支持集群操作,其原理是在内存维护一个主机列表,且集群中主机的权重值和主机在列表中重复出现的次数成正比
主机 权重
1.1
.
1.1
1
1.1
.
1.2
2
1.1
.
1.3
1
那么在内存中主机列表为:
host_list
=
[
"1.1.1.1"
,
"1.1.1.2"
,
"1.1.1.2"
,
"1.1.1.3"
, ]
如果用户根据如果要在内存中创建一个键值对(如:k1 = "v1"),那么要执行一下步骤:
- 根据算法将 k1 转换成一个数字
- 将数字和主机列表长度求余数,得到一个值 N( 0 <= N < 列表长度 )
- 在主机列表中根据 第2步得到的值为索引获取主机,例如:host_list[N]
- 连接 将第3步中获取的主机,将 k1 = "v1" 放置在该服务器的内存中
代码实现如下:
mc
=
memcache.Client([(
‘1.1.1.1:12000‘
,
1
), (
‘1.1.1.2:12000‘
,
2
), (
‘1.1.1.3:12000‘
,
1
)], debug
=
True
)
mc.
set
(
‘k1‘
,
‘v1‘
)
3、操作
1 >>> import memcache #导入模块 2 3 >>> mc = memcache.Client([‘10.211.55.5:12000‘],debug=True) #连接 4 >>> mc.set(‘x‘,1) #set()设置参数 5 True 6 >>> mc.set(‘y‘,2) 7 True 8 >>> mc.set(‘z‘,3) 9 True 10 >>> print (mc.get(‘x‘)) #get()获取参数 11 1 12 >>> print (mc.get(‘y‘)) 13 2 14 >>> print (mc.get(‘x‘)) 15 1 16 >>> print (mc.get(‘z‘)) 17 3 18 >>> mc.add(‘a‘,11) #增加参数,如已存在,刚报错 19 True 20 >>> mc.add(‘a‘,11) 21 False 22 MemCached: while expecting ‘STORED‘, got unexpected response ‘NOT_STORED‘ 23 >>> mc.add(‘x‘,11) 24 MemCached: while expecting ‘STORED‘, got unexpected response ‘NOT_STORED‘ 25 False 26 27 >>> mc.get_multi([‘x‘,‘y‘,‘z‘]) #获取多个值,反回字典形式 28 {‘z‘: 3, ‘x‘: 1, ‘y‘: 2} 29 >>> mc.delete(‘a‘) 30 1 31 >>> mc.set_multi({‘a‘:11,‘b‘:22,‘c‘:33}) == [] #设置多个数值,返回空列表 32 True 33 >>> mc.get(‘a‘) 34 11 35 >>> mc.get(‘b‘) 36 22 37 >>> mc.get(‘c‘) 38 33 39 >>> mc.delete(‘a‘) #删除 40 1 41 >>> mc.get(‘a‘) 42 >>> mc.get(‘b‘) 43 22 44 >>> mc.cas(‘b‘,‘2222‘) #对已存在的值修改 45 True 46 >>> mc.get(‘b‘) 47 ‘2222‘ 48 49 >>> mc.set(‘name‘,‘haha‘,10) #设置失效时间(10为失效时间为10s) 50 True 51 >>> mc.get(‘name‘) 52 ‘haha‘ 53 >>> mc.get(‘name‘) #10秒后找不到了 54 55 >>> mc.replace(‘b‘,1111) #修改,值不存在则添加 56 True 57 >>> mc.get(‘b‘) 58 1111 59 60 >>> mc.set(‘haha‘,‘‘) #设置值为空 61 True 62 >>> mc.replace(‘haha‘,‘nimeide‘) 63 True 64 >>> mc.get(‘haha‘) 65 ‘nimeide‘ 66 67 >>> mc.get(‘x‘) #整数加法,默认是1 68 1 69 >>> mc.incr(‘x‘) 70 2 71 >>> mc.incr(‘x‘) 72 3 73 >>> mc.incr(‘x‘,11) 74 14 75 >>> mc.get(‘x‘) #整数减法,默认是1 76 14 77 >>> mc.decr(‘x‘) 78 13 79 >>> mc.decr(‘x‘) 80 12 81 >>> mc.decr(‘x‘,10) 82 2
4、gets 和 cas
如商城商品剩余个数,假设改值保存在memcache中,product_count = 900
A用户刷新页面从memcache中读取到product_count = 900
B用户刷新页面从memcache中读取到product_count = 900
如果A、B用户均购买商品
A用户修改商品剩余个数 product_count=899
B用户修改商品剩余个数 product_count=899
如此一来缓存内的数据便不在正确,两个用户购买商品后,商品剩余还是 899
如果使用python的set和get来操作以上过程,那么程序就会如上述所示情况!
如果想要避免此情况的发生,只要使用 gets 和 cas 即可,如:
Ps:本质上每次执行gets时,会从memcache中获取一个自增的数字,通过cas去修改gets的值时,会携带之前获取的自增值和memcache中的自增值进行比较,如果相等,则可以提交,如果不想等,那表示在gets和cas执行之间,又有其他人执行了gets(获取了缓冲的指定值), 如此一来有可能出现非正常数据,则不允许修改。
redis
redis是一个key-value存储系统。和Memcached类似,它支持存储的value类型相对更多,包括string(字符串)、list(链表)、set(集合)、zset(sorted set --有序集合)和hash(哈希类型)。这些数据类型都支持push/pop、add/remove及取交集并集和差集及更丰富的操作,而且这些操作都是原子性的。在此基础上,redis支持各种不同方式的排序。与memcached一样,为了保证效率,数据都是缓存在内存中。区别的是redis会周期性的把更新的数据写入磁盘或者把修改操作写入追加的记录文件,并且在此基础上实现了master-slave(主从)同步。
安装:
wget http:
/
/
download.redis.io
/
releases
/
redis
-
3.0
.
6.tar
.gz
tar xzf redis
-
3.0
.
6.tar
.gz
cd redis
-
3.0
.
6
make install
启动服务端
#./src/redis-server &
启动客户端
# ./src/redis-cli
127.0.0.1:6379>
127.0.0.1:6379> set foo bar
OK
127.0.0.1:6379> get foo
"bar"
127.0.0.1:6379>
二、Python操作Redis
sudo pip3 install redis
or
sudo easy_install redis
or
源码安装
详见:https:
/
/
github.com
/
WoLpH
/
redis
-
py
API使用
redis-py 的API的使用可以分类为:
- 连接方式
- 连接池
- 操作
- String 操作
- Hash 操作
- List 操作
- Set 操作
- Sort Set 操作
- 管道
- 发布订阅
1、操作模式
redis-py提供两个类Redis和StrictRedis用于实现Redis的命令,StrictRedis用于实现大部分官方的命令,并使用官方的语法和命令,Redis是StrictRedis的子类,用于向后兼容旧版本的redis-py。
import redis r = redis.Redis(host=‘10.211.55.5‘,port=6379,) r.set(‘haha‘,‘soso‘) print(r.get(‘haha‘))
结果如下
b‘soso‘
2、连接池
redis-py使用connection pool来管理对一个redis server的所有连接,避免每次建立、释放连接的开销。默认,每个Redis实例都会维护一个自己的连接池。可以直接建立一个连接池,然后作为参数Redis,这样就可以实现多个Redis实例共享一个连接池。
import redis pool = redis.ConnectionPool(host=‘10.211.55.5‘,port=6379,) r = redis.Redis(connection_pool=pool) r.set(‘haha‘,‘hehe‘) print(r.get(‘haha‘))
结果哪下
b‘hehe‘
3、操作
String操作,redis中的String在在内存中按照一个name对应一个value来存储。如图:
name value
n1 ======> v1
n2 ======> v2
n3 ======> v3
set(name, value, ex=None, px=None, nx=False, xx=False)
在Redis中设置值,默认,不存在则创建,存在则修改
参数:
ex,过期时间(秒)
px,过期时间(毫秒)
nx,如果设置为True,则只有name不存在时,当前set操作才执行
xx,如果设置为True,则只有name存在时,岗前set操作才执行
setnx(name, value)
设置值,只有name不存在时,执行设置操作(添加)
setex(name, value, time)
# 设置值
# 参数:
# time,过期时间(数字秒 或 timedelta对象)
psetex(name, time_ms, value)
# 设置值
# 参数:
# time_ms,过期时间(数字毫秒 或 timedelta对象)
mset(*args, **kwargs)
批量设置值
如:
mset(k1=
‘v1‘
, k2=
‘v2‘
)
或
mget({
‘k1‘
:
‘v1‘
,
‘k2‘
:
‘v2‘
})
get(name)
获取值
mget(keys, *args)
批量获取
如:
mget(
‘ylr‘
,
‘haha‘
)
或
r.mget([
‘ylr‘
,
‘haha‘
])
getset(name, value)
设置新值并获取原来的值
getrange(key, start, end)
# 获取子序列(根据字节获取,非字符)
# 参数:
# name,Redis 的 name
# start,起始位置(字节)
# end,结束位置(字节)
# 如: "孙悟空" ,0-3表示 "孙"
setrange(name, offset, value)
# 修改字符串内容,从指定字符串索引开始向后替换(新值太长时,则向后添加)
# 参数:
# offset,字符串的索引,字节(一个汉字三个字节)
# value,要设置的值
incr(self, name, amount=1)
# 自增 name对应的值,当name不存在时,则创建name=amount,否则,则自增。
# 参数:
# name,Redis的name
# amount,自增数(必须是整数)
# 注:同incrby
incrbyfloat(self, name, amount=1.0)
# 自增 name对应的值,当name不存在时,则创建name=amount,否则,则自增。
# 参数:
# name,Redis的name
# amount,自增数(浮点型)
decr(self, name, amount=1)
# 自减 name对应的值,当name不存在时,则创建name=amount,否则,则自减。
# 参数:
# name,Redis的name
# amount,自减数(整数)
append(key, value)
# 在redis name对应的值后面追加内容
# 参数:
key, redis的name
value, 要追加的字符串
Hash操作,redis中Hash在内存中的存储格式如下图:
name hash
n1 =========> k1->v1
k2->v2
k3->v3
n2 =========> k9->v9
kn->vn
hset(name, key, value)
# name对应的hash中设置一个键值对(不存在,则创建;否则,修改)
# 参数:
# name,redis的name
# key,name对应的hash中的key
# value,name对应的hash中的value
# 注:
# hsetnx(name, key, value),当name对应的hash中不存在当前key时则创建(相当于添加)
hmset(name, mapping)
# 在name对应的hash中批量设置键值对
# 参数:
# name,redis的name
# mapping,字典,如:{‘k1‘:‘v1‘, ‘k2‘: ‘v2‘}
# 如:
# r.hmset(‘xx‘, {‘k1‘:‘v1‘, ‘k2‘: ‘v2‘})
hget(name,key)
# 在name对应的hash中获取根据key获取value
hmget(name, keys, *args)
# 在name对应的hash中获取多个key的值
# 参数:
# name,reids对应的name
# keys,要获取key集合,如:[‘k1‘, ‘k2‘, ‘k3‘]
# *args,要获取的key,如:k1,k2,k3
# 如:
# r.mget(‘xx‘, [‘k1‘, ‘k2‘])
# 或
# print r.hmget(‘xx‘, ‘k1‘, ‘k2‘)
hgetall(name)
获取name对应
hash
的所有键值
hlen(name)
# 获取name对应的hash中键值对的个数
hkeys(name)
# 获取name对应的hash中所有的key的值
hvals(name)
# 获取name对应的hash中所有的value的值
hexists(name, key)
# 检查name对应的hash是否存在当前传入的key
hdel(name,*keys)
# 将name对应的hash中指定key的键值对删除
hincrby(name, key, amount=1)
# 自增name对应的hash中的指定key的值,不存在则创建key=amount
# 参数:
# name,redis中的name
# key, hash对应的key
# amount,自增数(整数)
hincrbyfloat(name, key, amount=1.0)
# 自增name对应的hash中的指定key的值,不存在则创建key=amount
# 参数:
# name,redis中的name
# key, hash对应的key
# amount,自增数(浮点数)
# 自增name对应的hash中的指定key的值,不存在则创建key=amount
hscan(name, cursor=0, match=None, count=None)
# 增量式迭代获取,对于数据大的数据非常有用,hscan可以实现分片的获取数据,并非一次性将数据全部获取完,从而放置内存被撑爆
# 参数:
# name,redis的name
# cursor,游标(基于游标分批取获取数据)
# match,匹配指定key,默认None 表示所有的key
# count,每次分片最少获取个数,默认None表示采用Redis的默认分片个数
# 如:
# 第一次:cursor1, data1 = r.hscan(‘xx‘, cursor=0, match=None, count=None)
# 第二次:cursor2, data1 = r.hscan(‘xx‘, cursor=cursor1, match=None, count=None)
# ...
# 直到返回值cursor的值为0时,表示数据已经通过分片获取完毕
hscan_iter(name, match=None, count=None)
利用yield封装hscan创建生成器,实现分批去redis中获取数据
# 参数:
# match,匹配指定key,默认None 表示所有的key
# count,每次分片最少获取个数,默认None表示采用Redis的默认分片个数
# 如:
# for item in r.hscan_iter(‘xx‘):
# print item
List操作,redis中的List在在内存中按照一个name对应一个List来存储。如图:
name list
n1 ========> [v1,v2,v3...]
n2 ========> [n1,n2,n3...]
lpush(name,values)
# 在name对应的list中添加元素,每个新的元素都添加到列表的最左边
# 如:
# r.lpush(‘oo‘, 11,22,33)
# 保存顺序为: 33,22,11
# 扩展:
# rpush(name, values) 表示从右向左操作
lpushx(name,value)
# 在name对应的list中添加元素,只有name已经存在时,值添加到列表的最左边
# 更多:
# rpushx(name, value) 表示从右向左操作
llen(name)
# name对应的list元素的个数
linsert(name, where, refvalue, value))
# 在name对应的列表的某一个值前或后插入一个新值
# 参数:
# name,redis的name
# where,BEFORE或AFTER
# refvalue,标杆值,即:在它前后插入数据
# value,要插入的数据
r.lset(name, index, value)
# 对name对应的list中的某一个索引位置重新赋值
# 参数:
# name,redis的name
# index,list的索引位置
# value,要设置的值
r.lrem(name, value, num)
# 在name对应的list中删除指定的值
# 参数:
# name,redis的name
# value,要删除的值
# num, num=0,删除列表中所有的指定值;
# num=2,从前到后,删除2个;
# num=-2,从后向前,删除2个
lpop(name)
# 在name对应的列表的左侧获取第一个元素并在列表中移除,返回值则是第一个元素
# 更多:
# rpop(name) 表示从右向左操作
lindex(name, index)
#在name对应的列表中根据索引获取列表元素
lrange(name, start, end)
# 在name对应的列表分片获取数据
# 参数:
# name,redis的name
# start,索引的起始位置
# end,索引结束位置
ltrim(name, start, end)
# 在name对应的列表中移除没有在start-end索引之间的值
# 参数:
# name,redis的name
# start,索引的起始位置
# end,索引结束位置
rpoplpush(src, dst)
# 从一个列表取出最右边的元素,同时将其添加至另一个列表的最左边
# 参数:
# src,要取数据的列表的name
# dst,要添加数据的列表的name
blpop(keys, timeout)
# 将多个列表排列,按照从左到右去pop对应列表的元素
# 参数:
# keys,redis的name的集合
# timeout,超时时间,当元素所有列表的元素获取完之后,阻塞等待列表内有数据的时间(秒), 0 表示永远阻塞
# 更多:
# r.brpop(keys, timeout),从右向左获取数据
brpoplpush(src, dst, timeout=0)
# 从一个列表的右侧移除一个元素并将其添加到另一个列表的左侧
# 参数:
# src,取出并要移除元素的列表对应的name
# dst,要插入元素的列表对应的name
# timeout,当src对应的列表中没有数据时,阻塞等待其有数据的超时时间(秒),0 表示永远阻塞
自定义增量迭代
# 由于redis类库中没有提供对列表元素的增量迭代,如果想要循环name对应的列表的所有元素,那么就需要:
# 1、获取name对应的所有列表
# 2、循环列表
# 但是,如果列表非常大,那么就有可能在第一步时就将程序的内容撑爆,所有有必要自定义一个增量迭代的功能:
def
list_iter(name):
"""
自定义redis列表增量迭代
:param name: redis中的name,即:迭代name对应的列表
:return: yield 返回 列表元素
"""
list_count
=
r.llen(name)
for
index
in
xrange
(list_count):
yield
r.lindex(name, index)
# 使用
for
item
in
list_iter(
‘pp‘
):
print
item
Set操作,Set集合就是不允许重复的列表
sadd(name,values)
# name对应的集合中添加元素
scard(name)
获取name对应的集合中元素个数
sdiff(keys, *args)
在第一个name对应的集合中且不在其他name对应的集合的元素集合
sdiffstore(dest, keys, *args)
# 获取第一个name对应的集合中且不在其他name对应的集合,再将其新加入到dest对应的集合中
sinter(keys, *args)
# 获取多一个name对应集合的并集
sinterstore(dest, keys, *args)
# 获取多一个name对应集合的并集,再讲其加入到dest对应的集合中
sismember(name, value)
# 检查value是否是name对应的集合的成员
smembers(name)
# 获取name对应的集合的所有成员
smove(src, dst, value)
# 将某个成员从一个集合中移动到另外一个集合
spop(name)
# 从集合的右侧(尾部)移除一个成员,并将其返回
srandmember(name, numbers)
# 从name对应的集合中随机获取 numbers 个元素
srem(name, values)
# 在name对应的集合中删除某些值
sunion(keys, *args)
# 获取多一个name对应的集合的并集
sunionstore(dest,keys, *args)
# 获取多一个name对应的集合的并集,并将结果保存到dest对应的集合中
sscan(name, cursor=0, match=None, count=None)
sscan_iter(name, match=None, count=None)
# 同字符串的操作,用于增量迭代分批获取元素,避免内存消耗太大
有序集合,在集合的基础上,为每元素排序;元素的排序需要根据另外一个值来进行比较,所以,对于有序集合,每一个元素有两个值,即:值和分数,分数专门用来做排序。
zadd(name, *args, **kwargs)
# 在name对应的有序集合中添加元素
# 如:
# zadd(‘zz‘, ‘n1‘, 1, ‘n2‘, 2)
# 或
# zadd(‘zz‘, n1=11, n2=22)
zcard(name)
# 获取name对应的有序集合元素的数量
zcount(name, min, max)
# 获取name对应的有序集合中分数 在 [min,max] 之间的个数
zincrby(name, value, amount)
# 自增name对应的有序集合的 name 对应的分数
r.zrange( name, start, end, desc=False, withscores=False, score_cast_func=float)
# 按照索引范围获取name对应的有序集合的元素
# 参数:
# name,redis的name
# start,有序集合索引起始位置(非分数)
# end,有序集合索引结束位置(非分数)
# desc,排序规则,默认按照分数从小到大排序
# withscores,是否获取元素的分数,默认只获取元素的值
# score_cast_func,对分数进行数据转换的函数
# 更多:
# 从大到小排序
# zrevrange(name, start, end, withscores=False, score_cast_func=float)
# 按照分数范围获取name对应的有序集合的元素
# zrangebyscore(name, min, max, start=None, num=None, withscores=False, score_cast_func=float)
# 从大到小排序
# zrevrangebyscore(name, max, min, start=None, num=None, withscores=False, score_cast_func=float)
zrank(name, value)
# 获取某个值在 name对应的有序集合中的排行(从 0 开始)
# 更多:
# zrevrank(name, value),从大到小排序
zrangebylex(name, min, max, start=None, num=None)
# 当有序集合的所有成员都具有相同的分值时,有序集合的元素会根据成员的 值 (lexicographical ordering)来进行排序,而这个命令则可以返回给定的有序集合键 key 中, 元素的值介于 min 和 max 之间的成员
# 对集合中的每个成员进行逐个字节的对比(byte-by-byte compare), 并按照从低到高的顺序, 返回排序后的集合成员。 如果两个字符串有一部分内容是相同的话, 那么命令会认为较长的字符串比较短的字符串要大
# 参数:
# name,redis的name
# min,左区间(值)。 + 表示正无限; - 表示负无限; ( 表示开区间; [ 则表示闭区间
# min,右区间(值)
# start,对结果进行分片处理,索引位置
# num,对结果进行分片处理,索引后面的num个元素
# 如:
# ZADD myzset 0 aa 0 ba 0 ca 0 da 0 ea 0 fa 0 ga
# r.zrangebylex(‘myzset‘, "-", "[ca") 结果为:[‘aa‘, ‘ba‘, ‘ca‘]
# 更多:
# 从大到小排序
# zrevrangebylex(name, max, min, start=None, num=None)
zrem(name, values)
# 删除name对应的有序集合中值是values的成员
# 如:zrem(‘zz‘, [‘s1‘, ‘s2‘])
zremrangebyrank(name, min, max)
# 根据排行范围删除
zremrangebyscore(name, min, max)
# 根据分数范围删除
zremrangebylex(name, min, max)
# 根据值返回删除
zscore(name, value)
# 获取name对应有序集合中 value 对应的分数
zinterstore(dest, keys, aggregate=None)
# 获取两个有序集合的交集,如果遇到相同值不同分数,则按照aggregate进行操作
# aggregate的值为: SUM MIN MAX
zunionstore(dest, keys, aggregate=None)
# 获取两个有序集合的并集,如果遇到相同值不同分数,则按照aggregate进行操作
# aggregate的值为: SUM MIN MAX
zscan(name, cursor=0, match=None, count=None, score_cast_func=float)
zscan_iter(name, match=None, count=None,score_cast_func=float)
# 同字符串相似,相较于字符串新增score_cast_func,用来对分数进行操作
其他常用操作
delete(*names)
# 根据删除redis中的任意数据类型
exists(name)
# 检测redis的name是否存在
keys(pattern=‘*‘)
# 根据模型获取redis的name
# 更多:
# KEYS * 匹配数据库中所有 key 。
# KEYS h?llo 匹配 hello , hallo 和 hxllo 等。
# KEYS h*llo 匹配 hllo 和 heeeeello 等。
# KEYS h[ae]llo 匹配 hello 和 hallo ,但不匹配 hillo
expire(name ,time)
# 为某个redis的某个name设置超时时间
rename(src, dst)
# 对redis的name重命名为
move(name, db))
# 将redis的某个值移动到指定的db下
randomkey()
# 随机获取一个redis的name(不删除)
type(name)
# 获取name对应值的类型
scan(cursor=0, match=None, count=None)
scan_iter(match=None, count=None)
# 同字符串操作,用于增量迭代获取key
4、管道
redis-py默认在执行每次请求都会创建(连接池申请连接)和断开(归还连接池)一次连接操作,如果想要在一次请求中指定多个命令,则可以使用pipline实现一次请求指定多个命令,并且默认情况下一次pipline 是原子性操作。
import redis pool = redis.ConnectionPool(host=‘10.211.55.5‘, port=6379,max_connections=50) r = redis.Redis(connection_pool=pool) # pipe = r.pipeline(transaction=False) pipe = r.pipeline(transaction=True) r.set(‘name‘, ‘alex‘) #执行1 r.set(‘role‘, ‘sb‘) #执行2 // 当执行1完成后,执行2失败,那么执行1这个操作将回滚,相当于没有执行 pipe.execute()
5、发布订阅
发布订阅就跟听众收到广播电台一样,可以有多个发布方,多个频道,多个听众,前面的电台,跟频道一般是固定的,所以发布的话跟听众多少无关,只要听众订阅某个频道,就能收到该频道上发布的所有内容
demo
import redis class RedisHelper: def __init__(self): self.__conn = redis.Redis(host=‘10.211.55.5‘) self.chan_sub = ‘fm104.5‘ self.chan_pub = ‘fm104.5‘ def public(self, msg): self.__conn.publish(self.chan_pub, msg) return True def subscribe(self): pub = self.__conn.pubsub() pub.subscribe(self.chan_sub) pub.parse_response() return pub
订阅者
from my_demo import RedisHelper obj = RedisHelper() redis_sub = obj.subscribe() while True: msg= redis_sub.parse_response() print msg
发布者
from my_demo import RedisHelper obj = RedisHelper() obj.public(‘hello‘)
RabbitMQ
RabbitMQ是一个在AMQP基础上完整的,可复用的企业消息系统。他遵循Mozilla Public License开源协议。
MQ全称为Message Queue, 消息队列(MQ)是一种应用程序对应用程序的通信方法。应用程序通过读写出入队列的消息(针对应用程序的数据)来通信,而无需专用连接来链接它们。消 息传递指的是程序之间通过在消息中发送数据进行通信,而不是通过直接调用彼此来通信,直接调用通常是用于诸如远程过程调用的技术。排队指的是应用程序通过 队列来通信。队列的使用除去了接收和发送应用程序同时执行的要求。
RabbitMQ安装(CENTOS6)
wget -O /etc/yum.repos.d/CentOS-Base.repo http://mirrors.aliyun.com/repo/Centos-6.repo
wget -O /etc/yum.repos.d/epel.repo http://mirrors.aliyun.com/repo/epel-6.repo
yum -y install rabbitmq-server
启动:/etc/init.d/rabbitmq-server start
停止:/etc/init.d/rabbitmq-server stop
安装API
pip3 install pika
or
easy_install pika
or
source code
https://pypi.python.org/pypi/pika
使用API操作RabbitMQ
基于Queue实现生产者消费者模型
#!/usr/bin/env python # -*- coding:utf-8 -*- import Queue import threading message = Queue.Queue(10) def producer(i): while True: message.put(i) def consumer(i): while True: msg = message.get() for i in range(12): t = threading.Thread(target=producer, args=(i,)) t.start() for i in range(10): t = threading.Thread(target=consumer, args=(i,)) t.start()
对于RabbitMQ来说,生产和消费不再针对内存里的一个Queue对象,而是某台服务器上的RabbitMQ Server实现的消息队列。
import pika # ######################### 生产者 ######################### connection = pika.BlockingConnection(pika.ConnectionParameters( host=‘localhost‘)) channel = connection.channel() channel.queue_declare(queue=‘hello‘) channel.basic_publish(exchange=‘‘, routing_key=‘hello‘, body=‘Hello World!‘) print(" [x] Sent ‘Hello World!‘") connection.close()
import pika # ########################## 消费者 ########################## connection = pika.BlockingConnection(pika.ConnectionParameters( host=‘localhost‘)) channel = connection.channel() channel.queue_declare(queue=‘hello‘) def callback(ch, method, properties, body): print(" [x] Received %r" % body) channel.basic_consume(callback, queue=‘hello‘, no_ack=True) print(‘ [*] Waiting for messages. To exit press CTRL+C‘) channel.start_consuming()
1、acknowledgment 消息不丢失
no-ack = False,如果消费者遇到情况(its channel is closed, connection is closed, or TCP connection is lost)挂掉了,那么,RabbitMQ会重新将该任务添加到队列中。
import pika connection = pika.BlockingConnection(pika.ConnectionParameters( host=‘10.211.55.4‘)) channel = connection.channel() channel.queue_declare(queue=‘hello‘) def callback(ch, method, properties, body): print(" [x] Received %r" % body) import time time.sleep(10) print ‘ok‘ ch.basic_ack(delivery_tag = method.delivery_tag) channel.basic_consume(callback, queue=‘hello‘, no_ack=False) print(‘ [*] Waiting for messages. To exit press CTRL+C‘) channel.start_consuming()
2、durable 消息不丢失
import pika connection = pika.BlockingConnection(pika.ConnectionParameters(host=‘10.211.55.4‘)) channel = connection.channel() # make message persistent channel.queue_declare(queue=‘hello‘, durable=True) channel.basic_publish(exchange=‘‘, routing_key=‘hello‘, body=‘Hello World!‘, properties=pika.BasicProperties( delivery_mode=2, # make message persistent )) print(" [x] Sent ‘Hello World!‘") connection.close()
生产者
import pika connection = pika.BlockingConnection(pika.ConnectionParameters(host=‘10.211.55.4‘)) channel = connection.channel() # make message persistent channel.queue_declare(queue=‘hello‘, durable=True) def callback(ch, method, properties, body): print(" [x] Received %r" % body) import time time.sleep(10) print ‘ok‘ ch.basic_ack(delivery_tag = method.delivery_tag) channel.basic_consume(callback, queue=‘hello‘, no_ack=False) print(‘ [*] Waiting for messages. To exit press CTRL+C‘) channel.start_consuming()
消费者
3、消息获取顺序
默认消息队列里的数据是按照顺序被消费者拿走,例如:消费者1 去队列中获取 奇数 序列的任务,消费者1去队列中获取 偶数 序列的任务。
channel.basic_qos(prefetch_count=1) 表示谁来谁取,不再按照奇偶数排列
import pika connection = pika.BlockingConnection(pika.ConnectionParameters(host=‘10.211.55.4‘)) channel = connection.channel() # make message persistent channel.queue_declare(queue=‘hello‘) def callback(ch, method, properties, body): print(" [x] Received %r" % body) import time time.sleep(10) print ‘ok‘ ch.basic_ack(delivery_tag = method.delivery_tag) channel.basic_qos(prefetch_count=1) channel.basic_consume(callback, queue=‘hello‘, no_ack=False) print(‘ [*] Waiting for messages. To exit press CTRL+C‘) channel.start_consuming()
消费者
4、发布订阅
发布订阅和简单的消息队列区别在于,发布订阅会将消息发送给所有的订阅者,而消息队列中的数据被消费一次便消失。所以,RabbitMQ实现发布和订阅时,会为每一个订阅者创建一个队列,而发布者发布消息时,会将消息放置在所有相关队列中。
exchange type = fanout
import pika import sys connection = pika.BlockingConnection(pika.ConnectionParameters( host=‘localhost‘)) channel = connection.channel() channel.exchange_declare(exchange=‘logs‘, type=‘fanout‘) message = ‘ ‘.join(sys.argv[1:]) or "info: Hello World!" channel.basic_publish(exchange=‘logs‘, routing_key=‘‘, body=message) print(" [x] Sent %r" % message) connection.close()
发布者
import pika connection = pika.BlockingConnection(pika.ConnectionParameters( host=‘localhost‘)) channel = connection.channel() channel.exchange_declare(exchange=‘logs‘, type=‘fanout‘) result = channel.queue_declare(exclusive=True) queue_name = result.method.queue channel.queue_bind(exchange=‘logs‘, queue=queue_name) print(‘ [*] Waiting for logs. To exit press CTRL+C‘) def callback(ch, method, properties, body): print(" [x] %r" % body) channel.basic_consume(callback, queue=queue_name, no_ack=True) channel.start_consuming()
订阅者
5、关键字发送
exchange type = direct
之前事例,发送消息时明确指定某个队列并向其中发送消息,RabbitMQ还支持根据关键字发送,即:队列绑定关键字,发送者将数据根据关键字发送到消息exchange,exchange根据 关键字 判定应该将数据发送至指定队列。
import pika import sys connection = pika.BlockingConnection(pika.ConnectionParameters( host=‘localhost‘)) channel = connection.channel() channel.exchange_declare(exchange=‘direct_logs‘, type=‘direct‘) result = channel.queue_declare(exclusive=True) queue_name = result.method.queue severities = sys.argv[1:] if not severities: sys.stderr.write("Usage: %s [info] [warning] [error]\n" % sys.argv[0]) sys.exit(1) for severity in severities: channel.queue_bind(exchange=‘direct_logs‘, queue=queue_name, routing_key=severity) print(‘ [*] Waiting for logs. To exit press CTRL+C‘) def callback(ch, method, properties, body): print(" [x] %r:%r" % (method.routing_key, body)) channel.basic_consume(callback, queue=queue_name, no_ack=True) channel.start_consuming()
消费者
import pika import sys connection = pika.BlockingConnection(pika.ConnectionParameters( host=‘localhost‘)) channel = connection.channel() channel.exchange_declare(exchange=‘direct_logs‘, type=‘direct‘) severity = sys.argv[1] if len(sys.argv) > 1 else ‘info‘ message = ‘ ‘.join(sys.argv[2:]) or ‘Hello World!‘ channel.basic_publish(exchange=‘direct_logs‘, routing_key=severity, body=message) print(" [x] Sent %r:%r" % (severity, message)) connection.close()
生产者
6、模糊匹配
exchange type = topic
在topic类型下,可以让队列绑定几个模糊的关键字,之后发送者将数据发送到exchange,exchange将传入”路由值“和 ”关键字“进行匹配,匹配成功,则将数据发送到指定队列。
- # 表示可以匹配 0 个 或 多个 单词
- * 表示只能匹配 一个 单词
发送者路由值 队列中
mage.python old.
*
-
-
不匹配
mage.python old.
# -- 匹配
import pika import sys connection = pika.BlockingConnection(pika.ConnectionParameters( host=‘localhost‘)) channel = connection.channel() channel.exchange_declare(exchange=‘topic_logs‘, type=‘topic‘) result = channel.queue_declare(exclusive=True) queue_name = result.method.queue binding_keys = sys.argv[1:] if not binding_keys: sys.stderr.write("Usage: %s [binding_key]...\n" % sys.argv[0]) sys.exit(1) for binding_key in binding_keys: channel.queue_bind(exchange=‘topic_logs‘, queue=queue_name, routing_key=binding_key) print(‘ [*] Waiting for logs. To exit press CTRL+C‘) def callback(ch, method, properties, body): print(" [x] %r:%r" % (method.routing_key, body)) channel.basic_consume(callback, queue=queue_name, no_ack=True) channel.start_consuming()
消费者
import pika import sys connection = pika.BlockingConnection(pika.ConnectionParameters( host=‘localhost‘)) channel = connection.channel() channel.exchange_declare(exchange=‘topic_logs‘, type=‘topic‘) routing_key = sys.argv[1] if len(sys.argv) > 1 else ‘anonymous.info‘ message = ‘ ‘.join(sys.argv[2:]) or ‘Hello World!‘ channel.basic_publish(exchange=‘topic_logs‘, routing_key=routing_key, body=message) print(" [x] Sent %r:%r" % (routing_key, message)) connection.close()
生产者
SQLAlchemy
SQLAlchemy是Python编程语言下的一款ORM框架,该框架建立在数据库API之上,使用关系对象映射进行数据库操作,简言之便是:将对象转换成SQL,然后使用数据API执行SQL并获取执行结果。
Dialect用于和数据API进行交流,根据配置文件的不同调用不同的数据库API,从而实现对数据库的操作,如:
MySQL-Python mysql+mysqldb://<user>:<password>@<host>[:<port>]/<dbname> pymysql mysql+pymysql://<username>:<password>@<host>/<dbname>[?<options>] MySQL-Connector mysql+mysqlconnector://<user>:<password>@<host>[:<port>]/<dbname> cx_Oracle oracle+cx_oracle://user:[email protected]:port/dbname[?key=value&key=value...] 更多详见:http://docs.sqlalchemy.org/en/latest/dialects/index.html
步骤一:
使用 Engine/ConnectionPooling/Dialect 进行数据库操作,Engine使用ConnectionPooling连接数据库,然后再通过Dialect执行SQL语句。
from sqlalchemy import create_engine engine = create_engine("mysql+mysqldb://root:[email protected]:3306/s11", max_overflow=5) engine.execute( "INSERT INTO ts_test (a, b) VALUES (‘2‘, ‘v1‘)" ) engine.execute( "INSERT INTO ts_test (a, b) VALUES (%s, %s)", ((777, "v1"),(888, "v1"),) ) engine.execute( "INSERT INTO ts_test (a, b) VALUES (%(id)s, %(name)s)", id=999, name="v1" ) result = engine.execute(‘select * from ts_test‘) result.fetchall()
from sqlalchemy import create_engine engine = create_engine("mysql+mysqldb://root:[email protected]:3306/s11", max_overflow=5) # 事务操作 with engine.begin() as conn: conn.execute("insert into table (x, y, z) values (1, 2, 3)") conn.execute("my_special_procedure(5)") conn = engine.connect() # 事务操作 with conn.begin(): conn.execute("some statement", {‘x‘:5, ‘y‘:10})
注:查看数据库连接:show status like ‘Threads%‘;
上面的操作没什么用,代码的可用性依旧不高
步骤二:
使用 Schema Type/SQL Expression Language/Engine/ConnectionPooling/Dialect 进行数据库操作。Engine使用Schema Type创建一个特定的结构对象,之后通过SQL Expression Language将该对象转换成SQL语句,然后通过 ConnectionPooling 连接数据库,再然后通过 Dialect 执行SQL,并获取结果。
from sqlalchemy import create_engine, Table, Column, Integer, String, MetaData, ForeignKey metadata = MetaData() user = Table(‘user‘, metadata, Column(‘id‘, Integer, primary_key=True), Column(‘name‘, String(20)), ) color = Table(‘color‘, metadata, Column(‘id‘, Integer, primary_key=True), Column(‘name‘, String(20)), ) engine = create_engine("mysql+mysqldb://root:[email protected]:3306/s11", max_overflow=5) metadata.create_all(engine) # metadata.clear() # metadata.remove()
from sqlalchemy import create_engine, Table, Column, Integer, String, MetaData, ForeignKey metadata = MetaData() user = Table(‘user‘, metadata, Column(‘id‘, Integer, primary_key=True), Column(‘name‘, String(20)), ) color = Table(‘color‘, metadata, Column(‘id‘, Integer, primary_key=True), Column(‘name‘, String(20)), ) engine = create_engine("mysql+mysqldb://root:[email protected]:3306/s11", max_overflow=5) conn = engine.connect() # 创建SQL语句,INSERT INTO "user" (id, name) VALUES (:id, :name) conn.execute(user.insert(),{‘id‘:7,‘name‘:‘seven‘}) conn.close() # sql = user.insert().values(id=123, name=‘wu‘) # conn.execute(sql) # conn.close() # sql = user.delete().where(user.c.id > 1) # sql = user.update().values(fullname=user.c.name) # sql = user.update().where(user.c.name == ‘jack‘).values(name=‘ed‘) # sql = select([user, ]) # sql = select([user.c.id, ]) # sql = select([user.c.name, color.c.name]).where(user.c.id==color.c.id) # sql = select([user.c.name]).order_by(user.c.name) # sql = select([user]).group_by(user.c.name) # result = conn.execute(sql) # print result.fetchall() # conn.close()
增删改查
更多内容详见:
http://www.jianshu.com/p/e6bba189fcbd
http://docs.sqlalchemy.org/en/latest/core/expression_api.html
注:SQLAlchemy无法修改表结构,如果需要可以使用SQLAlchemy开发者开源的另外一个软件Alembic来完成。
步骤三:
使用 ORM/Schema Type/SQL Expression Language/Engine/ConnectionPooling/Dialect 所有组件对数据进行操作。根据类创建对象,对象转换成SQL,执行SQL。
from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, Integer, String from sqlalchemy.orm import sessionmaker from sqlalchemy import create_engine engine = create_engine("mysql+mysqldb://root:[email protected]:3306/s11", max_overflow=5) Base = declarative_base() class User(Base): __tablename__ = ‘users‘ id = Column(Integer, primary_key=True) name = Column(String(50)) # 寻找Base的所有子类,按照子类的结构在数据库中生成对应的数据表信息 # Base.metadata.create_all(engine) Session = sessionmaker(bind=engine) session = Session() # ########## 增 ########## # u = User(id=2, name=‘sb‘) # session.add(u) # session.add_all([ # User(id=3, name=‘sb‘), # User(id=4, name=‘sb‘) # ]) # session.commit() # ########## 删除 ########## # session.query(User).filter(User.id > 2).delete() # session.commit() # ########## 修改 ########## # session.query(User).filter(User.id > 2).update({‘cluster_id‘ : 0}) # session.commit() # ########## 查 ########## # ret = session.query(User).filter_by(name=‘sb‘).first() # ret = session.query(User).filter_by(name=‘sb‘).all() # print ret # ret = session.query(User).filter(User.name.in_([‘sb‘,‘bb‘])).all() # print ret # ret = session.query(User.name.label(‘name_label‘)).all() # print ret,type(ret) # ret = session.query(User).order_by(User.id).all() # print ret # ret = session.query(User).order_by(User.id)[1:3] # print ret # session.commit()