最短路径算法之Dijkstra算法(java实现)

前言

  Dijkstra算法是最短路径算法中为人熟知的一种,是单起点全路径算法。该算法被称为是“贪心算法”的成功典范。本文接下来将尝试以最通俗的语言来介绍这个伟大的算法,并赋予java实现代码。

一、知识准备:

  1、表示图的数据结构

  用于存储图的数据结构有多种,本算法中笔者使用的是邻接矩阵。

  图的邻接矩阵存储方式是用两个数组来表示图。一个一维数组存储图中顶点信息,一个二维数组(邻接矩阵)存储图中的边或弧的信息。

设图G有n个顶点,则邻接矩阵是一个n*n的方阵,定义为:

  

从上面可以看出,无向图的边数组是一个对称矩阵。所谓对称矩阵就是n阶矩阵的元满足aij = aji。即从矩阵的左上角到右下角的主对角线为轴,右上角的元和左下角相对应的元全都是相等的。

从这个矩阵中,很容易知道图中的信息。

(1)要判断任意两顶点是否有边无边就很容易了;

(2)要知道某个顶点的度,其实就是这个顶点vi在邻接矩阵中第i行或(第i列)的元素之和;

(3)求顶点vi的所有邻接点就是将矩阵中第i行元素扫描一遍,arc[i][j]为1就是邻接点;

而有向图讲究入度和出度,顶点vi的入度为1,正好是第i列各数之和。顶点vi的出度为2,即第i行的各数之和。

  有向图的定义也类似,故不做赘述。

  2、单起点全路径

    所谓单起点全路径,就是指在一个图中,从一个起点出发,到所有节点的最短路径。

  3、图论的基本知识(读者需自行寻找相关资料)

  4、互补松弛条件

 设标量d1,d2,....,dN满足

    dj<=di + aij,  (i,j)属于A,

 且P是以i1为起点ik为终点的路,如果

    dj = di + aij, 对P的所有边(i, j)

 成立,那么P是从i1到ik的最短路。其中,满足上面两式的被称为最短路问题的互补松弛条件。

 

二、算法思想

  1、令G = (V,E)为一个带权无向图。G中若有两个相邻的节点,i和j。aij(在这及其后面都表示为下标,请注意)为节点i到节点j的权值,在本算法可以理解为距离。每个节点都有一个值di(节点标记)表示其从起点到它的某条路的距离。

  2、算法初始有一个数组V用于储存未访问节点的列表,我们暂称为候选列表。选定节点1为起始节点。开始时,节点1的d1=0, 其他节点di=无穷大,V为所有节点。
初始化条件后,然后开始迭代算法,直到V为空集时停止。具体迭代步骤如下:

   将d值最小的节点di从候选列表中移除。(本例中V的数据结构采用的是优先队列实现最小值出列,最好使用斐波那契对,在以前文章有过介绍,性能有大幅提示)。对于以该节点为起点的每一条边,不包括移除V的节点, (i, j)属于A, 若dj > di + aij(违反松弛条件),则令

  dj = di + aij    , (如果j已经从V中移除过,说明其最小距离已经计算出,不参与此次计算)

  可以看到在算法的运算工程中,节点的d值是单调不增的

  具体算法图解如下

  

三、java代码实现

  

public class Vertex implements Comparable<Vertex>{

    /**
     * 节点名称(A,B,C,D)
     */
    private String name;

    /**
     * 最短路径长度
     */
    private int path;

    /**
     * 节点是否已经出列(是否已经处理完毕)
     */
    private boolean isMarked;

    public Vertex(String name){
        this.name = name;
        this.path = Integer.MAX_VALUE; //初始设置为无穷大
        this.setMarked(false);
    }

    public Vertex(String name, int path){
        this.name = name;
        this.path = path;
        this.setMarked(false);
    }

    @Override
    public int compareTo(Vertex o) {
        return o.path > path?-1:1;
    }
}
public class Graph {

    /*
     * 顶点
     */
    private List<Vertex> vertexs;

    /*
     * 边
     */
    private int[][] edges;

    /*
     * 没有访问的顶点
     */
    private Queue<Vertex> unVisited;

    public Graph(List<Vertex> vertexs, int[][] edges) {
        this.vertexs = vertexs;
        this.edges = edges;
        initUnVisited();
    }

    /*
     * 搜索各顶点最短路径
     */
    public void search(){
        while(!unVisited.isEmpty()){
            Vertex vertex = unVisited.element();
            //顶点已经计算出最短路径,设置为"已访问"
            vertex.setMarked(true);
            //获取所有"未访问"的邻居
              List<Vertex> neighbors = getNeighbors(vertex);
            //更新邻居的最短路径
            updatesDistance(vertex, neighbors);
            pop();
        }
        System.out.println("search over");
    }

    /*
     * 更新所有邻居的最短路径
     */
    private void updatesDistance(Vertex vertex, List<Vertex> neighbors){
        for(Vertex neighbor: neighbors){
            updateDistance(vertex, neighbor);
        }
    }

    /*
     * 更新邻居的最短路径
     */
    private void updateDistance(Vertex vertex, Vertex neighbor){
        int distance = getDistance(vertex, neighbor) + vertex.getPath();
        if(distance < neighbor.getPath()){
            neighbor.setPath(distance);
        }
    }

    /*
     * 初始化未访问顶点集合
     */
    private void initUnVisited() {
        unVisited = new PriorityQueue<Vertex>();
        for (Vertex v : vertexs) {
            unVisited.add(v);
        }
    }

    /*
     * 从未访问顶点集合中删除已找到最短路径的节点
     */
    private void pop() {
        unVisited.poll();
    }

    /*
     * 获取顶点到目标顶点的距离
     */
    private int getDistance(Vertex source, Vertex destination) {
        int sourceIndex = vertexs.indexOf(source);
        int destIndex = vertexs.indexOf(destination);
        return edges[sourceIndex][destIndex];
    }

    /*
     * 获取顶点所有(未访问的)邻居
     */
    private List<Vertex> getNeighbors(Vertex v) {
        List<Vertex> neighbors = new ArrayList<Vertex>();
        int position = vertexs.indexOf(v);
        Vertex neighbor = null;
        int distance;
        for (int i = 0; i < vertexs.size(); i++) {
            if (i == position) {
                //顶点本身,跳过
                continue;
            }
            distance = edges[position][i];    //到所有顶点的距离
            if (distance < Integer.MAX_VALUE) {
                //是邻居(有路径可达)
                neighbor = getVertex(i);
                if (!neighbor.isMarked()) {
                    //如果邻居没有访问过,则加入list;
                    neighbors.add(neighbor);
                }
            }
        }
        return neighbors;
    }

    /*
     * 根据顶点位置获取顶点
     */
    private Vertex getVertex(int index) {
        return vertexs.get(index);
    }

    /*
     * 打印图
     */
    public void printGraph() {
        int verNums = vertexs.size();
        for (int row = 0; row < verNums; row++) {
            for (int col = 0; col < verNums; col++) {
                if(Integer.MAX_VALUE == edges[row][col]){
                    System.out.print("X");
                    System.out.print(" ");
                    continue;
                }
                System.out.print(edges[row][col]);
                System.out.print(" ");
            }
            System.out.println();
        }
    }
}

    

public class Test {

    public static void main(String[] args){
        List<Vertex> vertexs = new ArrayList<Vertex>();
        Vertex a = new Vertex("A", 0);
        Vertex b = new Vertex("B");
        Vertex c = new Vertex("C");
        Vertex d = new Vertex("D");
        Vertex e = new Vertex("E");
        Vertex f = new Vertex("F");
        vertexs.add(a);
        vertexs.add(b);
        vertexs.add(c);
        vertexs.add(d);
        vertexs.add(e);
        vertexs.add(f);
        int[][] edges = {
                {Integer.MAX_VALUE,6,3,Integer.MAX_VALUE,Integer.MAX_VALUE,Integer.MAX_VALUE},
                {6,Integer.MAX_VALUE,2,5,Integer.MAX_VALUE,Integer.MAX_VALUE},
                {3,2,Integer.MAX_VALUE,3,4,Integer.MAX_VALUE},
                {Integer.MAX_VALUE,5,3,Integer.MAX_VALUE,5,3},
                {Integer.MAX_VALUE,Integer.MAX_VALUE,4,5,Integer.MAX_VALUE,5},
                {Integer.MAX_VALUE,Integer.MAX_VALUE,Integer.MAX_VALUE,3,5,Integer.MAX_VALUE}

        };
        Graph graph = new Graph(vertexs, edges);
        graph.printGraph();
        graph.search();
    }

}

四、 推荐阅读

  网络最大流问题之Ford-Fulkerson算法图文详解

 

时间: 2024-10-07 06:32:24

最短路径算法之Dijkstra算法(java实现)的相关文章

最短路径问题的Dijkstra算法

问题 是由荷兰计算机科学家艾兹赫尔·戴克斯特拉提出.迪科斯彻算法使用了广度优先搜索解决非负权有向图的单源最短路径问题,算法最终得到一个最短路径树>    .该算法常用于路由算法或者作为其他图算法的一个子模块. 这个算法的python实现途径很多,网上能够发现不少.这里推荐一个我在网上看到的,本来打算自己写,看了这个,决定自己不写了,因为他的已经太好了. 以下代码来自网络,但是我不能写来源,因为写了来源网址,这里就不让我发出这篇文章.这不是逼着我剽窃吗? 解决(Python) #!/usr/bin

最短路径算法(Dijkstra算法、Floyd-Warshall算法)

最短路径算法具体的形式包括: 确定起点的最短路径问题:即已知起始结点,求最短路径的问题.适合使用Dijkstra算法. 确定终点的最短路径问题:即已知终结结点,求最短路径的问题.在无向图中,该问题与确定起点的问题完全等同:在有向图中,该问题等同于把所有路径方向反转的确定起点的问题. 确定起点终点的最短路径问题:即已知起点和终点,求两结点之间的最短路径. 全局最短路径问题:求图中所有的最短路径.Floyd-Warshall算法. dijkstra算法思想: 开始时,S={u},T=V-{u}; 对

【数据结构】拓扑排序、最短路径算法、Dijkstra算法、无环图等等

图的定义 图(graph)G = (V,E)由顶点(vertex)的集V和边(Edge)的集E组成.有时也把边称作弧(arc),如果点对(v,w)是有序的,那么图就叫做有向的图(有向图).顶点v和w邻接(adjacent)当且仅当(v,w)属于E. 如果无向图中从每一个顶点到其他每个顶点都存在一条路径,则称该无向图是连通的(connected).具有这样性质的有向图称为是强连通的(strongly connected).如果有向图不是强连通的,但它的基础图(underlying graph)(也

图论(四)------非负权有向图的单源最短路径问题,Dijkstra算法

Dijkstra算法解决了有向图G=(V,E)上带权的单源最短路径问题,但要求所有边的权值非负. Dijkstra算法是贪婪算法的一个很好的例子.设置一顶点集合S,从源点s到集合中的顶点的最终最短路径的权值均已确定.算法反复选择具有最短路径估计的顶点u,并将u加入到S中,对u 的所有出边进行松弛.如果可以经过u来改进到顶点v的最短路径的话,就对顶点v的估计值进行更新. 如上图,u为源点,顶点全加入到优先队列中. ,队列中最小值为u(值为0),u出队列,对u的出边进行松弛(x.v.w),队列最小值

最小生成树算法之 Dijkstra算法

Dijkstra算法 Dijkstra算法是典型最短路算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止.Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低. Dijkstra算法是用来求任意两个顶点之间的最短路径.在该算法中,我们用邻接矩阵来存储图.在该程序中设置一个二维数组来存储任意两个顶点之间的边的权值.可以将任意一个图的信息通过键盘输入,让后在输入要查找的两个顶点,程序可以自动求出这两个顶点之间的最短路

数据结构与算法系列研究七——图、prim算法、dijkstra算法

图.prim算法.dijkstra算法 1. 图的定义 图(Graph)可以简单表示为G=<V, E>,其中V称为顶点(vertex)集合,E称为边(edge)集合.图论中的图(graph)表示的是顶点之间的邻接关系. (1) 无向图(undirect graph)      E中的每条边不带方向,称为无向图.(2) 有向图(direct graph)      E中的每条边具有方向,称为有向图.(3) 混合图       E中的一些边不带方向, 另一些边带有方向.(4) 图的阶      指

图中最短路径算法(Dijkstra算法)(转)

1.Dijkstra 1)      适用条件&范围: a)   单源最短路径(从源点s到其它所有顶点v); b)   有向图&无向图(无向图可以看作(u,v),(v,u)同属于边集E的有向图) c)   所有边权非负(任取(i,j)∈E都有Wij≥0); 2)      算法描述: 在带权图中最常遇到的问题就是,寻找两点间的最短路径问题. 解决最短路径问题最著名的算法是Djikstra算法.这个算法的实现基于图的邻接矩阵表示法,它不仅能够找到任意两点的最短路径,还可以找到某个指定点到其他

算法导论--单源最短路径问题(Dijkstra算法)

转载请注明出处:勿在浮沙筑高台http://blog.csdn.net/luoshixian099/article/details/51918844 单源最短路径是指:给定源顶点s∈V到分别到其他顶点v∈V?{s}的最短路径的问题. Dijkstra算法采用贪心策略:按路径长度递增的顺序,逐个产生各顶点的最短路径.算法过程中需要维护一个顶点集S,此顶点集保存已经找到最短路径的顶点.还需要维护一个距离数组dist, dist[i]表示第i个顶点与源结点s的距离长度. Dijkstra算法思路: S

图论(三) (一)最短路径算法 2.Dijkstra算法

Dijkstra 算法解决的是带权重的有向图上单源最短路径问题,该算法要求所有边的权重都为非负值.该算法的时间复杂度是O(N2),相比于处理无负权的图时,比Bellmad-Ford算法效率更高. 算法描述: 首先引用<算法导论>中的一段比较官方的话,如果可以看懂,那下一部分就可以跳过了: "Dijkstra算法在运行过程中维持的关键信息是一组结点集合S.从源结点s到该集合中每个结点之间的最短路径已经被找到.算法重复从结点集 V - S 中算则最短路径估计的最小的结点 u ,将 u 加