素数判断:
一、根据素数定义,该数除了1和它本身以外不再有其他的因数。
详见代码。
1 int prime() 2 { 3 for (int i=2; i*i<=n; i++) 4 { 5 if (n%i==0) //不是素数 6 return 1; //返回1 7 } 8 return 0; //是素数返回0 9 }
二、打表,将所有的素数一一列出,存在一个数组里。
详见代码。
1 void prime() 2 { 3 for (int i=2; i<20050; i++) //从2开始一个一个找 4 { 5 if (hash[i]==0) //这一个判断可以减少很多重复的,节省很多时间 6 { 7 for (int j=2; i*j<20050; j++) //只要乘以i就一定不是素数 8 { 9 hash[i*j]=1; //不是素数标记为1 10 } 11 } 12 } 13 }
举个例子:hdu2710 Max Factor
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2710
Max Factor
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4168 Accepted Submission(s):
1366
Problem Description
To improve the organization of his farm, Farmer John
labels each of his N (1 <= N <= 5,000) cows with a distinct serial number
in the range 1..20,000. Unfortunately, he is unaware that the cows interpret
some serial numbers as better than others. In particular, a cow whose serial
number has the highest prime factor enjoys the highest social standing among all
the other cows.
(Recall that a prime number is just a number that has no
divisors except for 1 and itself. The number 7 is prime while the number 6,
being divisible by 2 and 3, is not).
Given a set of N (1 <= N <=
5,000) serial numbers in the range 1..20,000, determine the one that has the
largest prime factor.
Input
* Line 1: A single integer, N
* Lines 2..N+1:
The serial numbers to be tested, one per line
Output
* Line 1: The integer with the largest prime factor. If
there are more than one, output the one that appears earliest in the input
file.
Sample Input
4
36
38
40
42
Sample Output
38
题目大意:找到所给数的最大素因子,然后在比较这些素因子的大小,找到最大的,最后输出原有的那个数。
详见代码。
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 5 using namespace std; 6 7 int hash[20050]; 8 9 void prime() 10 { 11 for (int i=2; i<20050; i++) 12 { 13 if (hash[i]==0) 14 { 15 for (int j=1; i*j<20050; j++) 16 { 17 hash[i*j]=i;//i表示的是最大的素因子 18 } 19 } 20 } 21 //return hash[n]; 22 } 23 24 int main () 25 { 26 int T; 27 memset(hash,0,sizeof(hash)); 28 sushu(); 29 while (~scanf("%d",&T)) 30 { 31 int Max=0,x=1; 32 while (T--) 33 { 34 int n; 35 scanf("%d",&n); 36 if (hash[n]>Max) 37 { 38 Max=hash[n]; 39 x=n; 40 } 41 } 42 printf ("%d\n",x); 43 } 44 return 0; 45 }
最大公约数(gcd)
详见代码。
1 int gcd(int a,int b) 2 { 3 return a%b?gcd(b,a%b):b; 4 }
最小公倍数
求解最小公倍数,一般都要借助最大公约数。辗转相除求得最大公约数,再用两数之积除以此最大公约数,得最小公倍数。
注意基本!!!