相似度计算map-reduce实现思路

相似度计算map-reduce实现思路

输入:

1 f(1)

2 f(2)

3 f(3)

4 f(4)

mapper:

1,2 f(1)

1,3 f(1)

1,4 f(1)

1,2 f(2)

2,3 f(2)

2,4 f(2)

1,3 f(3)

2,3 f(3)

3,4 f(3)

1,4 f(4)

2,4 f(4)

3,4 f(4)

reducer:

1,2 f(1) f(2)

1,3 f(1) f(3)

1,4 f(1) f(4)

2,3 f(2) f(3)

2,4 f(2) f(4)

3,4 f(3) f(4)

本文作者:linger

本文链接:http://blog.csdn.net/lingerlanlan/article/details/46289661

时间: 2024-10-14 08:16:14

相似度计算map-reduce实现思路的相关文章

基于hadoop (map/reduce)的大规模分布式并行计算生产排程系统的设计

map/reduce是大数据处理的技术,它的思路是把大规模数据分成一个个小数据块,每个数据块由一个map任务来处理,处理的中间结果汇总到reduce,最后生成最终的处理结果,这个处理和汇总的过程是可以反复多次的,也就是map-reduce-map-reduce 基于map/reduce的思路,我们可以设计基于hadoop(map/reduce)的大规模分布式并行计算生产排程系统,怎么样把大数据处理变成大规模分布式并行计算呢,就是我们不切分数据,每个map任务的数据都是相同的,每个map任务对排程

文本相似度计算基本方法小结

在计算文本相似项发现方面,有以下一些可参考的方法.这些概念和方法会帮助我们开拓思路. 相似度计算方面 Jaccard相似度:集合之间的Jaccard相似度等于交集大小与并集大小的比例.适合的应用包括文档文本相似度以及顾客购物习惯的相似度计算等. Shingling:k-shingle是指文档中连续出现的任意k个字符.如果将文档表示成其k-shingle集合,那么就可以基于集合之间的 Jaccard相似度来计算文档之间的文本相似度.有时,将shingle哈希成更短的位串非常有用,可以基于这些哈希值

分布式基础学习(2)分布式计算系统(Map/Reduce)

二. 分布式计算(Map/Reduce) 分 布式式计算,同样是一个宽泛的概念,在这里,它狭义的指代,按Google Map/Reduce框架所设计的分布式框架.在Hadoop中,分布式文件 系统,很大程度上,是为各种分布式计算需求所服务的.我们说分布式文件系统就是加了分布式的文件系统,类似的定义推广到分布式计算上,我们可以将其视为增 加了分布式支持的计算函数.从计算的角度上看,Map/Reduce框架接受各种格式的键值对文件作为输入,读取计算后,最终生成自定义格式的输出文件. 而从分布式的角度

hadoop学习WordCount+Block+Split+Shuffle+Map+Reduce技术详解

转自:http://blog.csdn.net/yczws1/article/details/21899007 纯干货:通过WourdCount程序示例:详细讲解MapReduce之Block+Split+Shuffle+Map+Reduce的区别及数据处理流程. Shuffle过程是MapReduce的核心,集中了MR过程最关键的部分.要想了解MR,Shuffle是必须要理解的.了解Shuffle的过程,更有利于我们在对MapReduce job性能调优的工作有帮助,以及进一步加深我们对MR内

Hadoop的HDFS和Map/Reduce

HDFS HDFS是一个具有高度容错性的分布式文件系统,适合部署在廉价的机器上,它具有以下几个特点: 1)适合存储非常大的文件 2)适合流式数据读取,即适合"只写一次,读多次"的数据处理模式 3)适合部署在廉价的机器上 但HDFS不适合以下场景(任何东西都要分两面看,只有适合自己业务的技术才是真正的好技术): 1)不适合存储大量的小文件,因为受Namenode内存大小限制 2)不适合实时数据读取,高吞吐量和实时性是相悖的,HDFS选择前者 3)不适合需要经常修改数据的场景 HDFS的架

LSF-SCNN:一种基于 CNN 的短文本表达模型及相似度计算的全新优化模型

欢迎大家前往腾讯云社区,获取更多腾讯海量技术实践干货哦~ 本篇文章是我在读期间,对自然语言处理中的文本相似度问题研究取得的一点小成果.如果你对自然语言处理 (natural language processing, NLP) 和卷积神经网络(convolutional neural network, CNN)有一定的了解,可以直接看摘要和LSF-SCNN创新与技术实现部分.如果能启发灵感,应用于更多的现实场景中带来效果提升,那才是这篇文章闪光的时刻.如果你没有接触过NLP和CNN,也不在担心,可

【java算法】---余弦相似度计算字符串相似率

余弦相似度计算字符串相似率 功能需求:最近在做通过爬虫技术去爬取各大相关网站的新闻,储存到公司数据中.这里面就有一个技术点,就是如何保证你已爬取的新闻,再有相似的新闻 或者一样的新闻,那就不存储到数据库中.(因为有网站会去引用其它网站新闻,或者把其它网站新闻拿过来稍微改下内容就发布到自己网站中). 解析方案:最终就是采用余弦相似度算法,来计算两个新闻正文的相似度.现在自己写一篇博客总结下. 一.理论知识 先推荐一篇博客,对于余弦相似度算法的理论讲的比较清晰,我们也是按照这个方式来计算相似度的.网

Spark streaming storm map reduce区别与联系

1.1  基本概念 Storm是一个流式计算框架,Storm采用Java和Clojure编写,其优点是全内存计算,所以它的定位是分布式实时计算. Spark是一个基于内存计算的开源集群计算系统,目的是更快速的进行数据分析.Spark类似于Hadoop MapReduce的通用并行计算框架,Spark基于Map Reduce算法实现的分布式计算,拥有Hadoop MapReduce所具有的优点,但不同于MapReduce的是Job中间输出和结果可以保存在内存中,从而不再需要读写HDFS,因此Spa

王亟亟的Python学习之路(八)-函数式编程,map(),reduce(),filter()

转载请注明出处:王亟亟的大牛之路 首先在这里祝愿大家,新年快乐,工作顺利,BUG少少!!! 本来说是在春节假期内继续维持着写文章的进度,但是还是偷懒了几天(打了4天SC2哈哈哈) 今天上的是关于Python的文章,毕竟在亲戚家拜年,懒得插各类手机调试什么的,况且确实好久没有弄Python了,就写了,废话不多,开始正题!! 函数式编程 函数是什么? 把复杂的操作化为简单的函数分解成简单的操作,这种操作就是面向过程,也就是C这类的实现的大体概念. 函数式是什么? 函数没有变量,任意一个函数,只要输入