POJ 3260 完全背包+多重背包+思维

传送门:https://vjudge.net/problem/20465/origin

题意:你有n种钞票,面值为c[i],数量为v[i],便利店老板有无数张面值为c[i]的钞票,问你买一个价值为T的物品,最少需要经手多少张钞票,老板找零的钞票数也算经手的钞票数

题解:因为我的钞票是有限的,所以将自己看作一个多重背包,老板的钞票是无限的,所以将老板的钞票看做一个完全背包,定义状态dp[i]最少花费多少张钞票可以买价值为i的物品

边界:dp[0]=0;

目的:ans=min(dp1[i]+dp2[i-v])   i>=v;

代码:

/**
 *        ┏┓    ┏┓
 *        ┏┛┗━━━━━━━┛┗━━━┓
 *        ┃       ┃  
 *        ┃   ━    ┃
 *        ┃ >   < ┃
 *        ┃       ┃
 *        ┃... ⌒ ...  ┃
 *        ┃       ┃
 *        ┗━┓   ┏━┛
 *          ┃   ┃ Code is far away from bug with the animal protecting          
 *          ┃   ┃   神兽保佑,代码无bug
 *          ┃   ┃           
 *          ┃   ┃        
 *          ┃   ┃
 *          ┃   ┃           
 *          ┃   ┗━━━┓
 *          ┃       ┣┓
 *          ┃       ┏┛
 *          ┗┓┓┏━┳┓┏┛
 *           ┃┫┫ ┃┫┫
 *           ┗┻┛ ┗┻┛
 */
// warm heart, wagging tail,and a smile just for you!
//                                                                     ███████████
//                                                                   ███╬╬╬╬╬╬╬╬╬╬███
//                                                                ███╬╬╬╬╬████╬╬╬╬╬╬███
//                                            ███████████       ██╬╬╬╬╬████╬╬████╬╬╬╬╬██
//                                      █████████╬╬╬╬╬████████████╬╬╬╬╬██╬╬╬╬╬╬███╬╬╬╬╬██
//                               ████████╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬█████████╬╬╬╬╬╬██╬╬╬╬╬╬╬██
//                             ████╬██╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬█████████╬╬╬╬╬╬╬╬╬╬╬██
//                           ███╬╬╬█╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬██╬╬███╬╬╬╬╬╬╬█████
//                         ███╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬██╬╬╬████████╬╬╬╬╬██
//                       ███╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬███╬╬╬╬╬╬╬╬╬███
//                     ███╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬█████╬╬╬╬╬╬╬██
//                 ████╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬████╬╬╬╬╬████
//     █████████████╬╬╬╬╬╬╬╬██╬╬╬╬╬████╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬█████╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬███╬╬╬╬██████
//   ████╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬██╬╬██████╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬██████╬╬╬╬╬╬╬███████████╬╬╬╬╬╬╬╬██╬╬╬██╬╬╬██
// ███╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬██╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬██╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬████╬╬╬╬╬╬╬╬╬╬╬█╬╬╬╬╬╬╬██╬╬╬╬╬╬╬╬██
// ██╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬██╬╬╬╬▓▓▓▓▓▓╬╬╬████╬╬████╬╬╬╬╬╬╬▓▓▓▓▓▓▓▓██╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬██╬╬╬╬╬╬╬███
// ██╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬██████▓▓▓▓▓▓▓╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬▓▓▓▓▓▓▓██╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬██╬╬╬╬█████
// ███╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬███╬╬╬╬╬██╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬█████╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬████████
//   ███╬╬╬╬╬╬╬╬╬╬╬╬╬█████╬╬╬╬╬╬╬╬██╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬███╬╬██╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬██
//       ██████████████  ████╬╬╬╬╬╬███████████████████████████╬╬╬╬╬██╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬╬████
//                         ███████                           █████  ███████████████████
#include <set>
#include <map>
#include <deque>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <bitset>
#include <cstdio>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;

typedef long long LL;
typedef pair<LL, LL> pLL;
typedef pair<LL, int> pLi;
typedef pair<int, LL> pil;;
typedef pair<int, int> pii;
typedef unsigned long long uLL;
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define bug printf("*********\n")
#define FIN freopen("input.txt","r",stdin);
#define FON freopen("output.txt","w+",stdout);
#define IO ios::sync_with_stdio(false),cin.tie(0)
#define debug1(x) cout<<"["<<#x<<" "<<(x)<<"]\n"
#define debug2(x,y) cout<<"["<<#x<<" "<<(x)<<" "<<#y<<" "<<(y)<<"]\n"
#define debug3(x,y,z) cout<<"["<<#x<<" "<<(x)<<" "<<#y<<" "<<(y)<<" "<<#z<<" "<<z<<"]\n"
LL read() {
    int x = 0, f = 1; char ch = getchar();
    while(ch < ‘0‘ || ch > ‘9‘) {
        if(ch == ‘-‘)f = -1;
        ch = getchar();
    }
    while(ch >= ‘0‘ && ch <= ‘9‘) {
        x = x * 10 + ch - ‘0‘;
        ch = getchar();
    }
    return x * f;
}
const double eps = 1e-8;
const int mod = 1e9 + 7;
const int maxn = 2e5 + 5;
const int INF = 0x3f3f3f3f;
const LL INFLL = 0x3f3f3f3f3f3f3f3f;
int dp1[maxn];//体积为i时的物品个数
int dp2[maxn];
int v[maxn];
int w[maxn];
int main() {
#ifndef ONLINE_JUDGE
    FIN
#endif
    int n, V;
    while(~scanf("%d%d", &n, &V)) {
        memset(v, 0, sizeof(v));
        memset(w, 0, sizeof(w));
        for(int i = 1; i <= n; i++) {
            scanf("%d", &v[i]);
        }
        for(int i = 1; i <= n; i++) {
            scanf("%d", &w[i]);
        }
        for(int i = 1; i <= 10000; i++)
            dp1[i] = dp2[i] = INF;
        dp2[0] = 0;
        for(int i = 1; i <= n; i++) {
            for(int j = v[i]; j <= 10000; j++) {
                dp2[j] = min(dp2[j], dp2[j - v[i]] + 1);//计算自己得到面额为j的物品需要的最少的钞票数。因为他有一个上界,可能用大额度的钞票会比用小额度的钞票用的钞票数少
            }
        }
        dp1[0] = 0;
        for(int i = 1; i <= n; i++)
            for(int j = 10000; j >= v[i]; j--)
                for(int k = 1; k <= w[i] && j >= k * v[i]; k++)
                    dp1[j] = min(dp1[j], dp1[j - k * v[i]] + k);//计算商店老板得到面额为j的物品需要的最少的钞票数
        int minn = dp1[V];
        // cout << minn << endl;
        for(int i = V + 1; i <= 10000; i++) {
            if(minn > dp1[i] + dp2[i - V]) minn = dp1[i] + dp2[i - V];
        }
        if(minn != INF )   printf("%d\n", minn);
        else printf("-1\n");
    }
    return 0;
}

原文地址:https://www.cnblogs.com/buerdepepeqi/p/10662294.html

时间: 2024-11-07 04:45:42

POJ 3260 完全背包+多重背包+思维的相关文章

poj 1276 Cash Machine (多重背包)

链接:poj 1276 题意:已知金额cash,给定几种不同面值的货币的数量及面值,求利用给定的货币可以凑成 小于等于cash的金额的最大值 分析:因为每种货币的面值及数量已知,可以将其转化为多重背包,背包的容量即为cash, 每个物品的价值及费用都为每种货币的面值. 多重背包可以转化为01背包,不过这样会超时,为了避免这样,可以转化为完全背包和二进制思想的01背包 #include<stdio.h> #include<string.h> int f[100010],v; int

HDU2191_悼念512汶川大地震遇难同胞——珍惜现在,感恩生活(背包/多重背包)

解题报告 题目传送门 题意: 中文不多说; 思路: 基础多重背包,每个物品有多个可以选,转换成01背包解. #include <iostream> #include <cstring> #include <cstdio> #define inf 99999999 using namespace std; int main() { int t,i,j,n,m,v,p,h,cc,w[1010],c[1010],dp[1010]; scanf("%d",&

POJ 3260 The Fewest Coins 最少硬币个数(完全背包+多重背包,混合型)

题意:FJ身上有各种硬币,但是要买m元的东西,想用最少的硬币个数去买,且找回的硬币数量也是最少(老板会按照最少的量自动找钱),即掏出的硬币和收到的硬币个数最少. 思路:老板会自动找钱,且按最少的找,硬币数量也不限,那么可以用完全背包得出组成每个数目的硬币最少数量.而FJ带的钱是有限的,那么必须用多重背包,因为掏出的钱必须大于m,那么我们所要的是大于等于m钱的硬币个数,但是FJ带的钱可能很多,超过m的很多倍都可能,那么肯定要有个背包容量上限,网上说的根据抽屉原理是m+max*max,这里的max指

poj 1742 Coins (多重背包)

http://poj.org/problem?id=1742 n个硬币,面值分别是A1...An,对应的数量分别是C1....Cn.用这些硬币组合起来能得到多少种面值不超过m的方案. 多重背包,不过这题很容易超时,用背包九讲的代码有人说行,但是我提交还是超时,后来参考别人代码加了一些优化才能过,有时间要去搞清楚多重背包的单调队列优化. 1 #include<cstdio> 2 #include<cstring> 3 #include<algorithm> 4 using

POJ 1014 Dividing(多重背包+二进制优化)

http://poj.org/problem?id=1014 题意:6个物品,每个物品都有其价值和数量,判断是否能价值平分. 思路: 多重背包.利用二进制来转化成0-1背包求解. 1 #include<iostream> 2 #include<string> 3 #include<cstring> 4 #include<cstdio> 5 #include<algorithm> 6 using namespace std; 7 8 const i

POJ 1276 Cash Machine(多重背包的二进制优化)

题目网址:http://poj.org/problem?id=1276 思路: 很明显是多重背包,把总金额看作是背包的容量. 刚开始是想把单个金额当做一个物品,用三层循环来 转换成01背包来做.T了-- 后面学习了 用二进制来处理数据. 简单地介绍一下二进制优化:?(? ? ??)  假设数量是8,则可以把它看成是1,2,4,1的组合,即这4个数的组合包括了1-8的所有取值情况.这是为什么呢?将它们转换成二进制再观察一下: 1:1 2:10 4:100 1:1 二进制都只有0,1.所以1,2,4

POJ 1014 Dividing【多重背包+二进制优化】

大意: 价值1, 2, 3, ……, 6的物品分别a1, a2, ……, a5, a6件 问能否把这些物品分成两份,使其具有相同的价值(所有物品必须全部用上) 分析: 给个物品有多件,即多重背包 只要看能不能将这些物品拼成   总价值 的 一半就可以了 转化为01背包是用二进制优化,否则会超时 代码: 1 #include <iostream> 2 #include <cstring> 3 #include <cstdio> 4 using namespace std;

POJ 2392 Space Elevator(多重背包)

Description The cows are going to space! They plan to achieve orbit by building a sort of space elevator: a giant tower of blocks. They have K (1 <= K <= 400) different types of blocks with which to build the tower. Each block of type i has height h

POJ 1742 Coins 【多重背包DP】

题意:有n种面额的硬币.面额.个数分别为A_i.C_i,求最多能搭配出几种不超过m的金额? 思路:dp[j]就是总数为j的价值是否已经有了这种方法,如果现在没有,那么我们就一个个硬币去尝试直到有,这种价值方法有了的话,那么就是总方法数加1.多重背包可行性问题 传统多重背包三重循环会超时,因为只考虑是否可行,没有考虑剩余面额数量的因素. o(n*v)方法 #include <iostream> #include <cstdio> #include <string.h> #