Luogu P4173 残缺的字符串

P4173 残缺的字符串

FFT在字符串匹配中的应用.

能解决大概这种问题:

给定长度为\(m\)的A串,长度为\(n\)的B串。问A串在B串中的匹配数

我们设一个函数(下标从\(0\)开始)

\(C(x,y) =A(x)- B(y)\),若为0,表示B串中以第\(y\)个字符结尾的字符可以与A串中以\(x\)节为结尾的字符可以匹配

\(P(x) = \sum_{i = 0}^{m - 1}C(i,x - m + i + 1)\)

但是很遗憾当\(P(x)\),等于零时,只能够说明上述子串的字符集相同.

为什么?因为负数的存在!

我们考虑怎么去掉负数,平方!

\(P(x) = \sum_{i = 0}^{m - 1}(A(i) - B[x - m + i + 1])^2\)

这时候,如果上式为\(0\),就能证明B串中\(x\)结尾的串可以与A匹配.

老样子设

\(f(i) = A(m - i - 1)\)

\(g(i) = B(i)\)

则有

\(P(x) = \sum_{i = 0}^{m - 1}f(m - i - 1)^2 -\sum_{i = 0}^{m - 1}2f(m - i - 1)g(x - m + i + 1) -\sum_{i = 0}^{m - 1}g(x - m + i + 1)^2\)

发现第一项和第三项是定值!

而第二项是个卷积,我们只需要求\(P(x)\)是否为零就好了。

我们终于这到了题目上.

这道题目中含有通配符,上式很明显不再成立

但大体思路还是不变的

\(C(x)\)与\(P(x)\)的意义不变

我们设

\(P(x) = \sum_{i = 0}^{m - 1}(A(i) - B(x - m + i + 1))^2A(i)B(x - m + i + 1)\)

即当B串\(x\)的位置为通配符时,\(B(x) = 0\),A同理

这样我们就又能用\(P(x)\)表示能否匹配了

同理,设\(f(x)\)与\(g(x)\)意义同上

\(P(x) =\sum_{i = 0}^{m - 1}f(m - i - 1)^3g(x - m + i + 1) - \sum_{i = 0}^{m - 1}f(m - i - 1)^2g(x - m + i + 1)+\sum_{i = 0}^{m - 1}f(m - i - 1)g(x - m + i + 1)^3\)

然后发现

上式三项都是卷积!

所以我们跑7遍FFT就好了

#include<cstdio>
#include<iostream>
#include<cctype>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<vector>
using namespace std;
const int N = 3e5 + 3;
const double Pi = acos(-1.0);
const double eps = 1e-12;
struct point{
    double x,y;
    point(double xx = 0,long double yy = 0){
        x = xx,y = yy;
    }
}a[N << 2],b[N << 2],c[N << 2];
char s1[N],s2[N];
int c1[N],c2[N];
int r[N << 2];
int n,m,limit = 1,l;
vector <int> G;
point operator + (point a,point b){return point(a.x + b.x,a.y + b.y);}
point operator - (point a,point b){return point(a.x - b.x,a.y - b.y);}
point operator * (point a,point b){return point(a.x * b.x - a.y * b.y,a.x * b.y + a.y * b.x);}
inline void fftle(point *A,int type){
    for(int i = 0;i < limit;++i)
        if(i < r[i]) swap(A[i],A[r[i]]);
    for(int mid = 1;mid < limit;mid <<= 1){
        point Wn = point(cos(Pi / mid),type * sin(Pi / mid));
        for(int R = mid << 1,j = 0;j < limit;j += R){
            point w(1,0);
            for(int k = 0;k < mid;++k,w = w * Wn){
                point x = A[j + k],y = A[j + mid + k] * w;
                A[j + k] = x + y;
                A[j + mid + k] = x - y;
            }
        }
    }
    if(type == -1) for(int i = 0;i < limit;++i) A[i].x = A[i].x / limit;
}
int main(){
    scanf("%d%d",&m,&n);
    scanf("%s%s",s1,s2);
    point zero = point(0,0);
    for(int i = 0;i < m;++i) c1[i] = s1[m - i - 1] == '*' ? 0 : s1[m - i - 1] - 'a' + 1;
    for(int i = 0;i < n;++i) c2[i] = s2[i] == '*' ? 0 : s2[i] - 'a' + 1;
    while(limit <= (n + m)) limit <<= 1,l++;
    for(int i = 0;i < limit;++i) r[i] = (r[i >> 1] >> 1) | ((i & 1) << (l - 1));
    for(int i = 0;i < m;++i) a[i].x = c1[i] * c1[i] * c1[i];
    for(int i = 0;i < n;++i) b[i].x = c2[i];
    fftle(a,1);fftle(b,1);
    for(int i = 0;i < limit;++i) c[i] = c[i] + (a[i] * b[i]),a[i] = b[i] = zero;
    for(int i = 0;i < m;++i) a[i].x = c1[i] * c1[i];
    for(int i = 0;i < n;++i) b[i].x = c2[i] * c2[i];
    fftle(a,1);fftle(b,1);
    point w(2,0);
    for(int i = 0;i < limit;++i) c[i] = c[i] - ((a[i] * b[i]) * w),a[i] = b[i] = zero;
    for(int i = 0;i < m;++i) a[i].x = c1[i];
    for(int i = 0;i < n;++i) b[i].x = c2[i] * c2[i] * c2[i];
    fftle(a,1);fftle(b,1);
    for(int i = 0;i < limit;++i) c[i] = c[i] + (a[i] * b[i]);
    fftle(c,-1);
    //for(int i = m - 1;i < n;++i) printf("%lf ",fabs(c[i].x / limit));puts("");
    for(int i = m - 1;i < n;++i) if((fabs)(c[i].x) < 0.5) G.push_back(i + 2 - m);
    printf("%d\n",(int)G.size());
    for(int i = 0;i < (int)G.size();++i) printf("%d ",G[i]);
}

参考博客

原文地址:https://www.cnblogs.com/wyxdrqc/p/10630131.html

时间: 2024-08-24 07:21:36

Luogu P4173 残缺的字符串的相关文章

[Luogu P4173]残缺的字符串 ( 数论 FFT)

题面 传送门:洛咕 Solution 这题我写得脑壳疼,我好菜啊 好吧,我们来说正题. 这题.....emmmmmmm 显然KMP类的字符串神仙算法在这里没法用了. 那咋搞啊(或者说这题和数学有半毛钱关系啊) 我们考虑把两个字符相同强行变为一个数学关系,怎么搞呢? 考虑这题是带通配符的,我们可以这样设: \(C(x,y)=(A[x]-B[y])^2*A[x]*B[y]\) 因此,我们可以看出两个字符一样当且仅当\(C(x,y)=0\) 因此,我们再设一个函数\(P(x)\)表示\(B\)串以第\

luogu P4173 残缺的字符串 FFT

温馨提示:倘若下角标看不清的话您可以尝试放大. 倘若没有通配符的话可以用KMP搞一搞. 听巨佬说通配符可以用FFT搞一搞. 我们先考虑一下没有通配符的怎么搞.我们设a=1,b=2,...,然后我们构造一个这样的函数\(\displaystyle P_x=\sum_{i=0}^{m-1}(A_i-B_{x-m+1+i})^2\),但且仅当A和B在x的位置上匹配完成的时候$P_x $为0.至于为什么是平方,主要是为了防止正数和负数相互抵消. 至于通配符,我们设它为0,我们尝试重新构造一下\(\dis

P4173 残缺的字符串

\(\color{#0066ff}{ 题目描述 }\) 很久很久以前,在你刚刚学习字符串匹配的时候,有两个仅包含小写字母的字符串\(A\)和\(B\),其中\(A\)串长度为\(m\),\(B\)串长度为\(n\).可当你现在再次碰到这两个串时,这两个串已经老化了,每个串都有不同程度的残缺. 你想对这两个串重新进行匹配,其中\(A\)为模板串,那么现在问题来了,请回答,对于\(B\)的每一个位置\(i\),从这个位置开始连续\(m\)个字符形成的子串是否可能与\(A\)串完全匹配? \(\col

P4173 残缺的字符串 fft

题意:给你两个字符串,问你第一个在第二个中出现过多少次,并输出位置,匹配时是模糊匹配*可和任意一个字符匹配 题解:fft加速字符串匹配; 假设上面的串是s,s长度为m,下面的串是p,p长度为n,先考虑没有*的情况那么\(\sum_{j=1}^m(s_{i+j}-p_j)^2=0\)就表示能够从i开始匹配,现在考虑有*的情况,我们只需要让有*的和任意字符匹配即可,那么把公式变成\(\sum_{j=1}^m(s_{i+j}-p_j)^2*s_{i+j}*p_j)=0\),但是fft正向匹配太慢了,我

P4173 残缺的字符串(FFT)

[Luogu4173] 题解 \(1.\)定义匹配函数 \(2.\)定义完全匹配函数 \(3.\)快速计算每一位的完全匹配函数值 #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #include<cmath> #define debug(...) fprintf(stderr,__VA_ARGS__) #define Debug(x) cout&l

luogu P3709 大爷的字符串题

二次联通门 : luogu P3709 大爷的字符串题 /* luogu P3709 大爷的字符串题 莫队 看了半天题目 + 题解 才弄懂了要求什么... 维护两个数组 一个记录数字i出现了几次 一个记录出现了i次的有几个数.. */ #include <algorithm> #include <cstdlib> #include <cstdio> #include <cmath> #define Max 200090 void read (int &

【BZOJ4259】 残缺的字符串

Description 很久很久以前,在你刚刚学习字符串匹配的时候,有两个仅包含小写字母的字符串A和B,其中A串长度为m,B串长度为n.可当你现在再次碰到这两个串时,这两个串已经老化了,每个串都有不同程度的残缺. 你想对这两个串重新进行匹配,其中A为模板串,那么现在问题来了,请回答,对于B的每一个位置i,从这个位置开始连续m个字符形成的子串是否可能与A串完全匹配? Input 第一行包含两个正整数m,n(1<=m<=n<=300000),分别表示A串和B串的长度. 第二行为一个长度为m的

@bzoj - [email&#160;protected] 残缺的字符串

目录 @[email protected] @[email protected] @accepted [email protected] @[email protected] @[email protected] 很久很久以前,在你刚刚学习字符串匹配的时候,有两个仅包含小写字母的字符串A和B,其中A串长度为m,B串长度为n.可当你现在再次碰到这两个串时,这两个串已经老化了,每个串都有不同程度的残缺. 你想对这两个串重新进行匹配,其中A为模板串,那么现在问题来了,请回答,对于B的每一个位置i,从这

BZOJ4259 : 残缺的字符串

假设字符串是从第0位开始的,那么对于两个长度都为n的字符串A,B,定义距离函数\[dis(A,B)=\sum_{i=0}^{n-1}(A[i]-B[i])^2[A[i]!='*'][B[i]!='*']\] 若把*号都设置为0,那么有\[dis(A,B)=\sum_{i=0}^{n-1}(A[i]-B[i])^2A[i]B[i]\] 如果$dis(A,B)=0$,那么A和B完全匹配. 对于这个问题,假设我们枚举B的末尾位置i,设$f[i]=dis(A,B[i-m+1,i])$,那么B的这一个子串