[UOJ455][UER #8]雪灾与外卖——堆+模拟费用流

题目链接:

[UOJ455]雪灾与外卖

题目描述:有$n$个送餐员(坐标为$x_{i}$)及$m$个餐厅(坐标为$y_{i}$,权值为$w_{i}$),每个送餐员需要前往一个餐厅,每个餐厅只能容纳$c_{i}$个送餐员,一个送餐员去一个餐厅的代价为$|x_{i}-y_{j}|+w_{j}$,求最小代价。

首先这个题可以暴力建图跑费用流,具体做法就不说了。现在我们考虑模拟费用流的过程,也就是模拟贪心及匹配中反悔的过程。

我们对送餐员和餐厅分别开一个小根堆然后从左往右决策每个坐标位置的人或餐厅的选择:

对于送餐员,先强制让他与左面的餐厅匹配(如果没有则看作和无限远处匹配),为了使代价最小,我们选择左面$w-y$最小的餐厅与他匹配,因为他还可能与右边的餐厅匹配,所以我们往送餐员的堆中加入一个当前送餐员的反悔操作,权值为$-(x-y+w)-x$(因为这个反悔操作只会匹配右边的餐厅,所以送餐员之后的权值为$-x$),这样如果之后选择这个反悔操作,就会将之前选择的代价抵消掉,并让这个送餐员产生新的代价。这也就是说送餐员的堆中存的都是反悔的送餐员。

对于餐厅,只要当前餐厅的权值$w+y$与送餐员的堆顶的权值之和小于$0$就说明这个堆顶的送餐员匹配当前餐厅比之前的选择更优,那么我们就让他匹配当前餐厅。这时候有两种情况:1、餐厅反悔,它要匹配它右边的送餐员,那么我们在餐厅的堆中加入权值为$-(v+w+y)+w-y$的反悔操作(其中$v$表示送餐员堆顶的权值,因为这个反悔操作只会匹配右边的送餐员,所以餐厅的权值为$w-y$)。2、送餐员反悔,他要匹配更右边的餐厅,这时就要在送餐员的堆中加入权值为$-w-y$的反悔操作来使下一次选到这个操作时抵消掉这次匹配的代价。

总的来说这道题就是在所有正常匹配和反悔操作中贪心寻找最优解来进行匹配。

最后说一下时间复杂度:因为对于送餐员向左匹配时只会反悔一次所以送餐员的反悔操作进堆次数是线性的。对于餐厅的操作,因为一个餐厅匹配左面的送餐员时送餐员的反悔操作权值都是$-y-w$,所以只需要记录一下匹配数量,统一入堆即可。每个反悔操作在被匹配后都会删除,而除了送餐员向左匹配的反悔操作之外,只会在枚举到每个餐厅时将一个权值入堆,所以总共能被匹配的送餐员反悔操作的数量是线性的。

#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<bitset>
#include<cstring>
#include<iostream>
#include<algorithm>
#define ll long long
using namespace std;
struct miku
{
	ll sum;
	ll num;
	miku(){}
	miku(ll SUM,ll NUM){sum=SUM,num=NUM;}
};
bool operator <(miku a,miku b){return a.sum>b.sum;}
priority_queue<miku>A,B;
ll x[100010];
ll y[100010];
ll w[100010];
ll c[100010];
int n,m;
ll ans;
void ins1(ll x)
{
	ll v=B.top().sum;
	int c=B.top().num;
	B.pop();
	ans+=x+v;
	A.push(miku(-(x+v)-x,1));
	if(c>1)
	{
		B.push(miku(v,c-1));
	}
}
void ins2(ll y,ll w,int c)
{
	int k=0;
	while(!A.empty()&&k<c&&A.top().sum+w+y<0)
	{
		ll v=A.top().sum;
		int s=A.top().num;
		A.pop();
		int g=min(s,c-k);
		s-=g,k+=g,ans+=1ll*g*(v+w+y);
		if(s)
		{
			A.push(miku(v,s));
		}
		B.push(miku(-(v+w+y)+w-y,g));
	}
	if(k)
	{
		A.push(miku(-y-w,k));
	}
	if(c-k)
	{
		B.push(miku(w-y,c-k));
	}
}
int main()
{
	scanf("%d%d",&n,&m);
	ll tot=0;
	for(int i=1;i<=n;i++)
	{
		scanf("%lld",&x[i]);
	}
	for(int i=1;i<=m;i++)
	{
		scanf("%lld%lld%lld",&y[i],&w[i],&c[i]);
		tot+=c[i];
	}
	if(tot<n)
	{
		printf("-1");
		return 0;
	}
	y[0]=-1ll<<60,c[0]=1<<30;
	int i=1,j=0;
	while(i<=n&&j<=m)
	{
		if(x[i]<=y[j])
		{
			ins1(x[i]);
			i++;
		}
		else
		{
			ins2(y[j],w[j],c[j]);
			j++;
		}
	}
	while(i<=n)
	{
		ins1(x[i]);
		i++;
	}
	while(j<=m)
	{
		ins2(y[j],w[j],c[j]);
		j++;
	}
	printf("%lld",ans);
}

原文地址:https://www.cnblogs.com/Khada-Jhin/p/10430331.html

时间: 2024-10-08 20:43:28

[UOJ455][UER #8]雪灾与外卖——堆+模拟费用流的相关文章

【BZOJ3502/2288】PA2012 Tanie linie/【POJ Challenge】生日礼物 堆+链表(模拟费用流)

[BZOJ3502]PA2012 Tanie linie Description n个数字,求不相交的总和最大的最多k个连续子序列. 1<= k<= N<= 1000000. Sample Input 5 2 7 -3 4 -9 5 Sample Output 13 题解:跟1150和2151差不多. 我们先做一些预处理,因为连续的正数和连续的负数一定是要么都选要么都不选,所以可以将它们合并成一个数,同时区间中的零以及左右两端的负数没有意义,可以将它们删掉.然后我们得到的序列就变成:正-

【bzoj1150】[CTSC2007]数据备份Backup 模拟费用流+链表+堆

题目描述 你在一家 IT 公司为大型写字楼或办公楼(offices)的计算机数据做备份.然而数据备份的工作是枯燥乏味的,因此你想设计一个系统让不同的办公楼彼此之间互相备份,而你则坐在家中尽享计算机游戏的乐趣.已知办公楼都位于同一条街上.你决定给这些办公楼配对(两个一组).每一对办公楼可以通过在这两个建筑物之间铺设网络电缆使得它们可以互相备份.然而,网络电缆的费用很高.当地电信公司仅能为你提供 K 条网络电缆,这意味着你仅能为 K 对办公楼(或总计2K个办公楼)安排备份.任一个办公楼都属于唯一的配

【BZOJ3638】Cf172 k-Maximum Subsequence Sum 线段树区间合并(模拟费用流)

[BZOJ3638]Cf172 k-Maximum Subsequence Sum Description 给一列数,要求支持操作: 1.修改某个数的值 2.读入l,r,k,询问在[l,r]内选不相交的不超过k个子段,最大的和是多少.1 ≤ n ≤ 105,1 ≤ m ≤ 105,1 ≤ l ≤ r ≤ n, 1 ≤ k ≤ 20 Sample Input 9 9 -8 9 -1 -1 -1 9 -8 9 3 1 1 9 1 1 1 9 2 1 4 6 3 Sample Output 17 25

【bzoj3638】Cf172 k-Maximum Subsequence Sum 模拟费用流+线段树区间合并

题目描述 给一列数,要求支持操作: 1.修改某个数的值 2.读入l,r,k,询问在[l,r]内选不相交的不超过k个子段,最大的和是多少. 输入 The first line contains integer n (1 ≤ n ≤ 105), showing how many numbers the sequence has. The next line contains n integers a1, a2, ..., an (|ai| ≤ 500). The third line contain

BZOJ.3638.CF172 k-Maximum Subsequence Sum(模拟费用流 线段树)

题目链接 各种zz错误..简直要写疯 /* 19604kb 36292ms 朴素线段树:线段树上每个点维护O(k)个信息,区间合并时O(k^2),总O(mk^2logn)->GG 考虑费用流:建一条n+1个点的链(点权设在边上,故需n+1个点),链上每个点和S.T连边,相邻点连边 这样数列中的区间和每条增广路一一对应 每次最多增广k次,O(nmk)->still GG 考虑费用流这一过程的实质:每次增广相当于贪心,本质上只有两种情况: 选取一段(新增一个区间).从已选的某个区间中删除一段 使用

【BZOJ4849】[Neerc2016]Mole Tunnels 模拟费用流

[BZOJ4849][Neerc2016]Mole Tunnels Description 鼹鼠们在底下开凿了n个洞,由n-1条隧道连接,对于任意的i>1,第i个洞都会和第i/2(取下整)个洞间有一条隧道,第i个洞内还有ci个食物能供最多ci只鼹鼠吃.一共有m只鼹鼠,第i只鼹鼠住在第pi个洞内,一天早晨,前k只鼹鼠醒来了,而后n-k只鼹鼠均在睡觉,前k只鼹鼠就开始觅食,最终他们都会到达某一个洞,使得所有洞的ci均大于等于该洞内醒着的鼹鼠个数,而且要求鼹鼠行动路径总长度最小.现对于所有的1<=k

题解-UOJ 455雪灾与外卖

Problem \(\mathrm{UOJ~455}\) 题意概要:一根数轴上有 \(n\) 只老鼠与 \(m\) 个洞,每个洞有费用与容量限制,要求每只老鼠要进一个洞且每个洞的老鼠不超过自身的容量限制,定义一种方案的费用为所有老鼠移动距离之和加上所有老鼠进的洞费用之和(若一个洞进了 \(k\) 只老鼠,则费用需要计算 \(k\) 次) \(n,m\leq 10^5\) Solution 冬令营时掉线了,只记得这题被大家把好评刷上去了 这题是所谓模拟费用流问题.我理解的模拟费用流其实等价于处理"

种树 (堆模拟网络流)

种树 题目描述 cyrcyr今天在种树,他在一条直线上挖了n个坑.这n个坑都可以种树,但为了保证每一棵树都有充足的养料,cyrcyr不会在相邻的两个坑中种树.而且由于cyrcyr的树种不够,他至多会种k棵树.假设cyrcyr有某种神能力,能预知自己在某个坑种树的获利会是多少(可能为负),请你帮助他计算出他的最大获利. 输入输出格式 输入格式: 第一行,两个正整数n,k. 第二行,n个正整数,第i个数表示在直线上从左往右数第i个坑种树的获利. 输出格式: 输出1个数,表示cyrcyr种树的最大获利

CF 962(耻辱场) /2错误 相间排位 堆模拟 X轴距离最小值

A #include <bits/stdc++.h> #define PI acos(-1.0) #define mem(a,b) memset((a),b,sizeof(a)) #define TS printf("!!!\n") #define pb push_back #define inf 0x3f3f3f3f //std::ios::sync_with_stdio(false); using namespace std; //priority_queue<i