超分辨率重建——背景与研究意义

一个课题,首先别人会问你为什么会研究这个,所以这是必须的。

超分辨率重建是指通过对数字图像信号的分析,采用软件算法的方式,由一帧或多帧图像重建转化成更高分辨率图像或视频的技术。

既然采用软件的算法,必然是因为硬件上的不足,那么当前硬件上存在哪些技术性的不足呢,下面有请:

1: 减小传感器中的像素尺寸,提高阵列密度

一方面技术工艺限制,另一方面当像素尺寸减小到一定程度时,加性噪声几乎维持不变,有效信号的能量将随传感器像素尺寸成比例减小,导致所形成图像的信噪比下降,退化反而加重

2:增大成像阵列芯片的面积

                 应用这种尺寸较大的高精度光学传感器将会显著增加成本,给成像设备的普及带来重要阻碍

那么还有其他方面的问题才导致我们选择超分辨率重建这条道路吗?

1:成像过程中各种噪声,场景运动,模糊等,太多的因素会使图像退化降质了,而SR软件的算法具有相当的灵活性,适应性强

2:  深刻分析了成像过程,成像模型的建立,使得超分辨率重建算法能够实现成为可能。

目前超分辨率重建的应用:

1:数字信号DTV转化为高清晰度电视HDTV

2:遥感军事应用,帮助气象检测、地理环境分析、军事保护等

3:医学成像上,帮助病情分析、病体定位等

4:视频监控,提高公共安全、协助破案等

原文地址:https://www.cnblogs.com/bingoc/p/10705964.html

时间: 2024-10-03 05:40:04

超分辨率重建——背景与研究意义的相关文章

JPEG压缩图像超分辨率重建算法

压缩图像超分辨率重建算法学习 超分辨率重建是由一幅或多幅的低分辨率图像重构高分辨率图像,如由4幅1m分辨率的遥感图像重构分辨率0.25m分辨率图像.在军用/民用上都有非常大应用. 眼下的超分辨率重建方法主要分为3类:基于插值.基于学习.基于重建的方法.现在已经研究得比較多.可是大多数算法都是对普通图像进行研究,针对压缩图像/视频超分辨率重建的研究比較少.近期查阅部分文献.进行了学习.在此做些总结. 相关的文献: 1.Super-resolution from compressed video 2

[转]图像超分辨率重建简介

图像超分辨率重建技术就是利用一组低质量.低分辨率图像(或运动序列)来产生单幅高质量.高分辨率图像.图像超分辨率重建应用领域及其宽广,在军事,医学,公共安全,计算机视觉等方面都存在着重要的应用前景.在计算机视觉领域,图像超分辨率重建技术有可能使图像实现从检出水平(detection level)向识别水平(recognition level)的转化,或更进一步实现向细辨水平(identification level)的转化.图像超分辨率重建技术可以提高图像的识别能力和识别精度.图像超分辨率重建技术

用一个玩具例子说明基于视频的超分辨率重建的基本思想

本文是基于知乎上的一个答案 基于视频的超分辨率重建是指从许多帧连续的低分辨率图像中重建出一幅高分辨率的图像,并且这幅高分辨率的图像能够显示出单帧低分辨率图像中丢掉的细节,比如下面是一个2秒视频(176x144)中的一帧: 为了方便和分辨率重建之后的图片对比,用Nearest Neighbor放大到了704x576.而下面是重建后的超分辨率图像: 可以看到,许多丢失的细节被重建了,这就是基于视频序列的超分辨率重建. 接下来用一个玩具例子来说明基本原理,首先打开画图板,写下一个线条分明,软绵无力,面

图像超分辨率重建之srcnn,基于tensorflow实现

本篇适用人群对于那些知道srcnn的每个步骤的人但是不是很会打代码的人 首先,附上我的github:https://github.com/zzydashuaibi/srcnn_tensorflow 在写代码之前,我们需要明白一件事就是我们每一次训练实际上是训练图片的某一部分(33*33)最后输出的是卷积后的大小只有22*22,所以srcnn的预处理要比其他的图像重建的模型要复杂一点. 他除了一般的预处理操作,还需要将图片分割,最后的训练完还做实验的时候还需要将图片结合起来,至于其他的,相信你自己

【超分辨率专题】—基于深度学习的图像超分辨率最新进展与趋势

1.简介 图像超分辨率是计算机视觉和图像处理领域一个非常重要的研究问题,在医疗图像分析.生物特征识别.视频监控与安全等实际场景中有着广泛的应用.随着深度学习技术的发展,基于深度学习的图像超分方法在多个测试任务上,取得了目前最优的性能和效果.本文介绍的一篇综述(Deep Learning for Image Super-resolution:A Survey)给出了一个统一的深度学习视角,来回顾最近的超分技术进展,主要包括三个方面: 给出了综合性的基于深度学习的图像超分技术综述,包括问题设置.数据

图像超分辨率项目帮你「拍」出高清照片

相机不够算法凑,拥有超级拍照能力的手机也离不开算法的加持.本文介绍的图像超分辨率项目可以帮你补齐相机镜头的短板. 华为 P30 发布会上展示的埃菲尔铁塔高清远距离照片 今天,一位 Reddit 网友贴出了自己基于 Keras 的图像超分辨率项目,可以让照片放大后依然清晰.先来看一下效果. 放大数倍后,照片中的蝴蝶(蛾子?)依然没有失真,背上的绒毛清晰可见 作者表示,该项目旨在改善低分辨率图像的质量,使其焕然一新.使用该工具可以对图像进行超级放缩,还能很容易地在 RDN 和 GAN上进行实验. 该

Google 超分辨率技术 RAISR

每天都有数以百万计的图片在网络上被分享.储存,用户借此探索世界,研究感兴趣的话题,或者与朋友家人分享假期照片.问题是,大量的图片要嘛被照相设备的像素所限制,要嘛在手机.平板或网络限制下被人为压缩,降低了画质. 如今高分辨率显示屏幕正在家庭和移动设备上普及,因此,把低分辨率图片转化为高清晰版本,并可在多种设备上查看和分享,正在成为一项巨大的需求.日前,Google 推出了一项新技术 RAISR,其全称是"Rapid and Accurate Image Super-Resolution"

基于学习的超分辨率算法

基于学习的超分辨率技术最早是由卡耐基一梅隆实验室的 Baker S在2000年提出的.他们提出一种基于识别先验 知识的方法,通过算法去学习训练指定类别,将得到的先验 知识用于超分辨率.随后,多伦多大学的 Hertzmann a等提 出了基于多尺度自动回归的图像类比算法.麻省理工学院的 Freeman WT5等提出了一个基于例子的方法,利用马尔可夫 网络来学习训练库中与低分辨率图像不同区域相对应的高分 辨率图像的细节,再用学习得到的关系来预测输入低分辨率 图像的细节信息. Christopher

基于自相似的单幅图像超分辨率放大

先放上处理效果 小图像: 放大4倍的图像: 参考论文:http://www.cs.huji.ac.il/~raananf/projects/lss_upscale/ 应用: 可用于常用小幅图像的放大处理,也可应用于标清视频向高清/超高清视频的放大显示处理.相比于常用的bilinear.bicubic.window sinc等算法,可得到清晰度更高的效果. 缺点: 由于作者未公开代码,因此按照论文实现的效果,与作者给出的放大同等倍数效果仍存在一些差异,后续还需要研究.