【tyvj1520】 树的直径

描述 Description

树的直径,即这棵树中距离最远的两个结点的距离。每两个相邻的结点的距离为1,即父亲结点与儿子结点或儿子结点与父子结点之间的距离为1.有趣的是,从树的任意一个结点a出发,走到距离最远的结点b,再从结点b出发,能够走的最远距离,就是树的直径。树中相邻两个结点的距离为1。你的任务是:给定一棵树,求这棵树中距离最远的两个结点的距离。

输入格式 InputFormat

输入共n行
第一行是一个正整数n,表示这棵树的结点数
接下来的n-1行,每行三个正整数a,b,w。表示结点a和结点b之间有一条边,长度为w
数据保证一定是一棵树,不必判错。

输出格式 OutputFormat

输出共一行
第一行仅一个数,表示这棵树的最远距离

样例输入 SampleInput

4
1 2 10
1 3 12
1 4 15

样例输出 SampleOutput

27

数据范围和注释 Hint

10%的数据满足1<=n<=5
40%的数据满足1<=n<=100
100%的数据满足1<=n<=10000 1<=a,b<=n 1<=w<=10000

题解

此题求树上最长链,即树的直径,有很多方法

可以如题中所说,用两次bfs,求出1的最远点X,再求X的最远点Y,XY即为直径

这个证明比较容易,大致可以分三步

先证明1,X一定和直径有交

再证明X一定是直径的一个端点

那么找X的最远点Y,XY即为直径

或者可以采用dp做法,基于直径为某个点到其不同子树叶子的最长链+次长链

BFS

 1 #include<cstdio>
 2 #include<iostream>
 3 #include<algorithm>
 4 #include<cstring>
 5 #include<vector>
 6 #define ll long long
 7 using namespace std;
 8 ll read(){
 9     int x=0,f=1;char ch=getchar();
10     while(ch<‘0‘||ch>‘9‘){ if(ch==‘-‘)f=-1;ch=getchar();}
11     while(ch>=‘0‘&&ch<=‘9‘){ x=x*10+ch-‘0‘;ch=getchar();}
12     return x*f;
13 }
14 int X,n,q[100005],d[100005];
15 vector<int> e[100005],len[100005];
16 char ch[5];
17 void bfs(int x){
18     X=0;
19     int head=0,tail=1;
20     q[0]=x;
21     memset(d,0,sizeof(d));
22     while(head!=tail){
23         int now=q[head];head++;
24         if(d[now]>d[X]) X=now;
25         for(int i=0;i<e[now].size();i++){
26             if(!d[e[now][i]]&&e[now][i]!=x){
27                 d[e[now][i]]=d[now]+len[now][i];
28                 q[tail++]=e[now][i];
29             }
30         }
31     }
32 }
33 int main(){
34     n=read();
35     for(int i=1;i<n;i++){
36         int u=read(),v=read(),w=read();
37         e[u].push_back(v); len[u].push_back(w);
38         e[v].push_back(u); len[v].push_back(w);
39     }
40     bfs(1); bfs(X);
41     printf("%d\n",d[X]);
42     return 0;
43 }

DP

 1 #include<cstdio>
 2 #include<cstring>
 3 #include<iostream>
 4 #include<algorithm>
 5 #define maxn 10005
 6 #define inf 0x7fffffff
 7 using namespace std;
 8 int n,cnt,ans;
 9 int f1[maxn],f2[maxn],last[maxn];  //f1求最长链,f2求次长链
10 struct edge{
11     int to,next,v;
12 }e[maxn<<1];
13 void add(int u,int v,int w){
14     e[++cnt].to=v;e[cnt].next=last[u];last[u]=cnt;e[cnt].v=w;
15 }
16 void dp(int x,int fa){
17     for(int i=last[x];i;i=e[i].next){
18         int y=e[i].to;
19         if(y==fa) continue;
20         dp(y,x);
21         if(f1[y]+e[i].v>f1[x]){
22             f2[x]=f1[x];
23             f1[x]=f1[y]+e[i].v;
24         }
25         else f2[x]=max(f2[x],f1[y]+e[i].v);
26     }
27     ans=max(f1[x]+f2[x],ans);
28 }
29 int main(){
30     ios::sync_with_stdio(false);
31     cin>>n;
32     for(int i=1;i<n;i++){
33         int u,v,w;
34         cin>>u>>v>>w;
35         add(u,v,w); add(v,u,w);
36     }
37     dp(1,0);
38     cout<<ans<<endl;
39     return 0;
40 }
时间: 2024-10-27 04:22:32

【tyvj1520】 树的直径的相关文章

poj 1985 Cow Marathon 【树的直径】

题目:poj 1985 Cow Marathon 题意:给出一个树,让你求树的直径. 分析: 树的直径:树上两点之间的最大距离. 我们从任意一点出发,BFS一个最远距离,然后从这个点出发,在BFS一个最远距离,就是树的直径. AC代码: /* POJ:1985 Cow Marathon 2014/10/12/21:18 Yougth*/ #include <cstdio> #include <iostream> #include <algorithm> #include

poj1849(求树的直径)

题目链接:http://poj.org/problem?id=1849 题意:有一颗n个结点的带权的无向树, 在s结点放两个机器人, 这两个机器人会把树的每条边都走一遍, 但是最后机器人不要求回到出发点. 问你两个机器人走的路总长之和的最小值是多少? 分析:如果从某点出发遍历完一棵树再回来,那么所有边都会走两遍,而从某点有两个机器人出发去遍历,因为不用回来,所以最后那两个人距离越远越好,可以从树的直径上某个点背道而驰,那么这段距离(树的直径)只走了一遍,其他的要走两遍,所以ans=sum*2-l

SDUT OJ 3045 迷之图论 (树的直径)

题目地址:SDUT OJ 3045 这题比赛的时候想的差不多..但是总是觉得不对..写了一次就没再写,然后删了..当时没想到的是第二次求出来的就是最长链..当时想到的两次bfs找最大值(这一种方法其实结果也对..TAT..),还有找到点后在回溯减去重点等等..但总觉得好像都不太对...赛后才知道这题原来是树的直径.....牡丹江区域现场赛的时候遇到过,不过赛后也没看... 找树的直径的方法其实就是先任取一点进行bfs,找到最远的一点,这时最远的一点肯定是最长链端点之一,然后再从这一最远点开始bf

hdu4612 无向图中任意添加一条边后使桥的数量最少 / 无向图缩点+求树的直径

题意如上,含有重边(重边的话,俩个点就可以构成了边双连通). 先缩点成树,在求数的直径,最远的连起来,剩下边(桥)的自然最少.这里学习了树的直径求法:第一次选任意起点U,进行bfs,到达最远的一个点v(level最深)该点必然是树的直径的一个端点,,再从该点出发,bfs,到最深的一点,该点深度就是直径.(证明:先假设u,是直径上一点,S,T是直径的端点,设v!=t,则有(V,U)+(U,S)>(T,U)+(U,S),矛盾,故t=v:若u不是直径上一点,设u到直径上的一点为x,同理易证. 最后 缩

ZOJ Problem Set - 3820 Building Fire Stations 【树的直径 + 操作 】

题目:problemId=5374" target="_blank">ZOJ Problem Set - 3820 Building Fire Stations 题意:给出n个点,n-1条边的一棵树.然后要在两个点上建立两个消防站.让全部点的到消防站最大距离的点的这个距离最小. 分析:首先先求这个树的直径.然后在树的直径的中点处把树分成两棵树.然后在把两棵树分别取中点的最大值就是ans值. 这个题目数据有点水了感觉... AC代码: #include <cstdi

BDFZOI 树的直径

提交次数:2 涉及知识:基础图论/BFS 描述 一棵树T的"直径"定义为结点两两间距离的最大值.给定带权树T,求T的直径长度. 输入 第一行包含2个整数N.M,表示图中共有N个结点和M条无向边.(N <= 5000,M<n)接下来M行,每行包含3个整数{u,v,w},表示有一条无向边连接结点u.v*输入保证是无环图输出一个整数,代表直径长度 样例输入 4 31 2 12 3 22 4 3 样例输出 5 代码: 1 #include<iostream> 2 #in

codeforces GYM 100114 J. Computer Network 无相图缩点+树的直径

题目链接: http://codeforces.com/gym/100114 Description The computer network of “Plunder & Flee Inc.” consists of n servers and m two-way communication links. Two servers can communicate either through a direct link, or through a chain of links, by relayi

hdu 4607(树的直径)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4607 题解:给定一棵树,从树中的任意选一个顶点出发,遍历K个点的最短距离是多少?(每条边的长度为1) 算法分析: 首先如果k小于等于直径长度,那么答案为k−1;如果k大于直径长度,设直径长度为r,那么答案为r−1+(k−r)*2;树的直径:树上的最长简单路径; 代码: 1 #include <cstdio> 2 #include <cmath> 3 #include <cstri

BZOJ 2282 &amp; 树的直径

SDOI2011的Dayx第2题 题意: 在树中找到一条权值和不超过S的链(为什么是链呢,因为题目中提到“使得路径的两端都是城市”,如果不是链那不就不止两端了吗——怎么这么机智的感觉...),使得不在链上的点与这条链的距离最大值最小. SOL: 最大值最小!这不是二分的节奏么?然而hzw学长说二分更直观我却一点都没有体会到... 这道题的关键是猜想(貌似还挺好想)并证明(貌似一直都是可有可无的东西,不过还挺好证的),路径一定在直径上,那么我们先两遍*FS找到直径,用一个队列维护链上的路径,以及预