高并发状态下修改数据库的操作

在高并发状态下,尤其数据在频繁修改的状态下,很可能出现脏数据,也有可能造成脏读,不可重复读等问题,那么怎么解决这种问题呢,其实解决方式有很多中,我们探讨出来的结果是,在频繁修改的表里面添加一个时间戳或者随机数的字段,例如,timestamp。

原理是当每一次修改数据的时候都要把之前的时间戳修改成当前的时间戳,并且之前的时间戳要作为where条件,如果之前的时间戳和参数里面的时间戳不一致,则修改失败,在重新查询进行反复操作,上代码:

try {
 if (count>5) {
   return "";
 }
 Serialize serialize = serializeManager.queryByType(serviceType);
     if (serialize!=null) {
     Serialize serializeUpdate = new Serialize();
     serializeUpdate.setId(serialize.getId());
     serializeUpdate.setRandomCode(serialize.getRandomCode());
     serializeUpdate.setRandomCodeNew(UUID.randomUUID().toString());
     serializeUpdate.setSerializeStart(serialize.getSerializeStart()+1);
     boolean flag = serializeManager.updateByRandom(serializeUpdate);
     if (flag) {
         return serialize.getSerializeCode()+(serialize.getSerializeStart()+1);
     }else {
       count++;
        return getCode(serviceType,count);
     }
 }else {
   return "";
 }
} catch (Exception e) {
 e.printStackTrace();
 return "";
}

流程:1.首先查询出来当前信息,

2.根据之前的随机码并作为修改时候的条件

3.修改新生成的随机码,如果修改失败,则递归调用一次本方法。直到成功。

时间: 2024-10-27 05:27:34

高并发状态下修改数据库的操作的相关文章

读/写锁的实现和应用(高并发状态下的map实现)

程序中涉及到对一些共享资源的读和写操作,且写操作没有读操作那么频繁.在没有写操作的时候,两个线程同时读一个资源没有任何问题,所以应该允许多个线程能在同时读取共享资源.但是如果有一个线程想去写这些共享资源,就不应该再有其它线程对该资源进行读或写(译者注:也就是说:读-读能共存,读-写不能共存,写-写不能共存).这就需要一个读/写锁来解决这个问题. 按照上面的叙述,简单的实现出一个读/写锁 public class ReadWriteLock{ private int readers = 0; pr

高并发压力下导致数据库bug

环境信息:  linux 6.1 + oracle11.2.0.3 RAC 问题现象: 学校晚上6点选课,人数大概有3000,7点时,数据库报错如下(数据库到6点多还是可以连接的),数据库hung住了. Tue Dec 16 18:00:33 2014Dumping diagnostic data in directory=[cdmp_20141216180033], requested by (instance=2, osid=24917 (M001)), summary=[incident=

高并发场景下缓存+数据库双写不一致问题分析与解决方案设计

Redis是企业级系统高并发.高可用架构中非常重要的一个环节.Redis主要解决了关系型数据库并发量低的问题,有助于缓解关系型数据库在高并发场景下的压力,提高系统的吞吐量(具体Redis是如何提高系统的性能.吞吐量,后面会专门讲). 而我们在Redis的实际使用过程中,难免会遇到缓存与数据库双写时数据不一致的问题,这也是我们必须要考虑的问题.如果还有同学不了解这个问题,可以搬小板凳来听听啦. 一.数据库+缓存双写不一致问题引入 要讲数据库+缓存双写不一致的问题,就需要先讲一下这个问题是怎么发生的

高并发的下的数据库设计

现在都什么年代了,还拿着sql server mysql oracle 读取数据呢,好你们遇到的问题我来给你们解答下 在高并发情况下,谈谈数据库与Redis之间如何进行数据同步(写,读),即能保证业务的完整性,又能提升性能 方式1:数据库保存数据,redis不persistredis启动后,从数据库加载数据不要求强一致实时性的读请求,都由redis处理要求强一致实时性的读请求,由数据库处理写请求有2种处理方式,由数据库处理- 应用先写道数据库,然后更新redis- 应用先写道数据库,然后其它da

php高并发状态下文件的读写

背景 1.对于PV不高或者说并发数不是很大的应用,不用考虑这些,一般的文件操作方法完全没有问题 2.如果并发高,在我们对文件进行读写操作时,很有可能多个进程对进一文件进行操作,如果这时不对文件的访问进行相应的独占,就容易造成数据丢失 例如:一个在线聊天室(这里假定把聊天内容写入文件),在同一时刻,用户A和用户B都要操作数据保存文件,首先是A打开了文件,然后更新里面的数据,但这 里B也正好也打开了同一个文件,也准备更新里面的数据.当A把写好的文件保存时,这里其实B已经打开了文件.但当B再把文件保存

如何在高并发环境下设计出无锁的数据库操作(Java版本) 转载

一个在线2k的游戏,每秒钟并发都吓死人.传统的hibernate直接插库基本上是不可行的.我就一步步推导出一个无锁的数据库操作. 1. 并发中如何无锁. 一个很简单的思路,把并发转化成为单线程.Java的Disruptor就是一个很好的例子.如果用java的concurrentCollection类去做,原理就是启动一个线程,跑一个Queue,并发的时候,任务压入Queue,线程轮训读取这个Queue,然后一个个顺序执行. 在这个设计模式下,任何并发都会变成了单线程操作,而且速度非常快.现在的n

数据库 之 高并发环境下的规则

原文:数据库 之 高并发环境下的规则 本文大部分转至沈剑老师,加上自己的一些见解. 本文前提 高并发环境 规则要点 1) 数据库字符集使用utf8mb4 无乱码风险.万国码 2)禁止使用存储过程.视图.触发器.Event 高并发大数据的互联网业务,架构设计思路是"解放数据库CPU,将计算转移到服务层",并发量大的情况下,这些功能很可能将数据库拖死,业务逻辑放到服务层具备更好的扩展性,能够轻易实现"增机器就加性能".数据库擅长存储与索引,CPU计算还是上移吧 3)禁止

[转]高并发访问下避免对象缓存失效引发Dogpile效应

避免Redis/Memcached缓存失效引发Dogpile效应 Redis/Memcached高并发访问下的缓存失效时可能产生Dogpile效应(Cache Stampede效应). 推荐阅读:高并发下的 Nginx 优化方案 http://www.linuxidc.com/Linux/2013-01/78791.htm 避免Memcached缓存的Dogpile效应 Memcached的read-through cache流程:客户端读取缓存,没有的话就由客户端生成缓存.Memcached缓

大话程序猿眼里的高并发(下)

大话程序猿眼里的高并发(下) 前言 高并发经常会发生在有大活跃用户量,用户高聚集的业务场景中,如:秒杀活动,定时领取红包等. 为了让业务可以流畅的运行并且给用户一个好的交互体验,我们需要根据业务场景预估达到的并发量等因素,来设计适合自己业务场景的高并发处理方案. 在电商相关产品开发的这些年,我有幸的遇到了并发下的各种坑,这一路摸爬滚打过来有着不少的血泪史,这里进行的总结,作为自己的归档记录,同时分享给大家. 服务器架构 业务从发展的初期到逐渐成熟,服务器架构也是从相对单一到集群,再到分布式服务.