Problem Description
Professor Zhang has kinds of characters and the quantity of the i-th character is ai. Professor Zhang wants to use all the characters build several palindromic strings. He also wants to maximize the length of the shortest palindromic string.
For example, there are 4 kinds of characters denoted as ‘a‘, ‘b‘, ‘c‘, ‘d‘ and the quantity of each character is {2,3,2,2} . Professor Zhang can build {"acdbbbdca"}, {"abbba", "cddc"}, {"aca", "bbb", "dcd"}, or {"acdbdca", "bb"}. The first is the optimal solution where the length of the shortest palindromic string is 9.
Note that a string is called palindromic if it can be read the same way in either direction.
Input
There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:
The first line contains an integer n (1≤n≤105) -- the number of kinds of characters. The second line contains n integers a1,a2,...,an (0≤ai≤104).
Output
For each test case, output an integer denoting the answer.
Sample
Sample Input 4 4 1 1 2 4 3 2 2 2 5 1 1 1 1 1 5 1 1 2 2 3 Sample Output 3 6 1 3
题意:
开始输入T,有T组测试样例,每组测试样例给定n个数,代表n个字符的个数,每个数代表的字符是唯一确定的,将这些字符组成若干个回文串(可以一个,也可以多个),找出所有组合方式中最短 回文串 的最长长度。
比如第一组样例 一共有4个字符,假定为ABCD,其中A有1个,B有1个,C有2个,D有4个。组成的回文有{(CAC)(DDBDD)}或者{(A)(B)(CC)(DDDD)}等多种方式,其中第一种情况中,最短的长度为3,所以答案为3。再看题意中给出的样例,一共有4个字符,假定为ABCD,其中A有2个,B有3个,C有2个,D有2个。组成的回文有{"acdbbbdca"}, {"abbba", "cddc"}, {"aca", "bbb", "dcd"}, {"acdbdca", "bb"}。在第一种情况中,最短的长度为9,所以输出为9。
思路:
如果是单个的,想构成较长的回文,至少有一对字符来和他组成,组成为ABA。
所以,统计所有的字符中奇数的1的个数和偶数2的对数,比如一个字符有5个,则表示为2对偶数,1个奇数。
最后判断奇数和偶数的数量关系,如果奇数为0,偶数不为0,输出偶数*2(因为偶数是对数,不是个数),如果奇数偶数都不为0,将偶数平均分配到奇数中,表示一个奇数对应这n对偶数,输出(偶数对数/奇数个数)*2+1。
代码:
#include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #include<queue> using namespace std; int a[101000]; int main() { int n; int m; cin>>m; for(int j=0; j<m; j++) { cin>>n; for(int i=0; i<n; i++) cin>>a[i]; int ou=0,ji=0; for(int i=0; i<n; i++) { if(a[i]%2==1) ji++; ou+=a[i]/2; } if(ji==0&&ou!=0) cout<<ou*2<<endl; else if(ji==0&&ou==0) cout<<1<<endl; else { int ans=ou/ji; cout<<ans*2+1<<endl; } } return 0; }