白化whitening

原文地址:http://blog.csdn.net/hjimce/article/details/50864602

作者:hjimce

一、相关理论

白化这个词,可能在深度学习领域比较常遇到,挺起来就是高大上的名词,然而其实白化是一个比PCA稍微高级一点的算法而已,所以如果熟悉PCA,那么其实会发现这是一个非常简单的算法。

白化的目的是去除输入数据的冗余信息。假设训练数据是图像,由于图像中相邻像素之间具有很强的相关性,所以用于训练时输入是冗余的;白化的目的就是降低输入的冗余性。

输入数据集X,经过白化处理后,新的数据X‘满足两个性质:

(1)特征之间相关性较低;
(2)所有特征具有相同的方差。

其实我们之前学的PCA算法中,可能PCA给我们的印象是一般用于降维操作。然而其实PCA如果不降维,而是仅仅使用PCA求出特征向量,然后把数据X映射到新的特征空间,这样的一个映射过程,其实就是满足了我们白化的第一个性质:除去特征之间的相关性。因此白化算法的实现过程,第一步操作就是PCA,求出新特征空间中X的新坐标,然后再对新的坐标进行方差归一化操作。

二、算法概述

白化分为PCA白化、ZCA白化,下面主要讲解算法实现。这部分主要是学了UFLDL的深度学习《白化》教程:http://ufldl.stanford.edu/wiki/index.php/%E7%99%BD%E5%8C%96。自己的一点概括总结,算法实现步骤如下:

1、首先是PCA预处理

     

上面图片,左图表示原始数据X,然后我们通过协方差矩阵可以求得特征向量u1、u2,然后把每个数据点,投影到这两个新的特征向量,得到进行坐标如下:

这就是所谓的pca处理。

2、PCA白化

所谓的pca白化是指对上面的pca的新坐标X’,每一维的特征做一个标准差归一化处理。因为从上面我们看到在新的坐标空间中,(x1,x2)两个坐标轴方向的数据明显标准差不同,因此我们接着要对新的每一维坐标做一个标注差归一化处理:

当然你也可以采用下面的公式:

X‘为经过PCA处理的新PCA坐标空间,然后λi就是第i维特征对应的特征值(前面pca得到的特征值),ε是为了避免除数为0。

3、ZCA白化

ZCA白虎是在PCA白化的基础上,又进行处理的一个操作。具体的实现是把上面PCA白化的结果,又变换到原来坐标系下的坐标:

给人的感觉就像是在PCA空间做了处理完后,然后又把它变换到原始的数据空间。

具体源码实现如下:

[python] view plain copy

  1. def zca_whitening(inputs):
  2. sigma = np.dot(inputs, inputs.T)/inputs.shape[1] #inputs是经过归一化处理的,所以这边就相当于计算协方差矩阵
  3. U,S,V = np.linalg.svd(sigma) #奇异分解
  4. epsilon = 0.1                #白化的时候,防止除数为0
  5. ZCAMatrix = np.dot(np.dot(U, np.diag(1.0/np.sqrt(np.diag(S) + epsilon))), U.T)                     #计算zca白化矩阵
  6. return np.dot(ZCAMatrix, inputs)   #白化变换

参考文献:

1、http://ufldl.stanford.edu/wiki/index.php/%E7%99%BD%E5%8C%96

原文地址:https://www.cnblogs.com/yuluoxingkong/p/9031368.html

时间: 2024-10-21 16:38:00

白化whitening的相关文章

深度学习入门教程UFLDL学习实验笔记三:主成分分析PCA与白化whitening

主成分分析与白化是在做深度学习训练时最常见的两种预处理的方法,主成分分析是一种我们用的很多的降维的一种手段,通过PCA降维,我们能够有效的降低数据的维度,加快运算速度.而白化就是为了使得每个特征能有同样的方差,降低相邻像素的相关性. 主成分分析PCA PCA算法可以将输入向量转换为一个维数低很多的近似向量.我们在这里首先用2D的数据进行试验,其数据集可以在UFLDL网站的相应页面http://ufldl.stanford.edu/wiki/index.php/Exercise:PCA_in_2D

激活函数,Batch Normalization和Dropout

神经网络中还有一些激活函数,池化函数,正则化和归一化函数等.需要详细看看,啃一啃吧.. 1. 激活函数 1.1 激活函数作用 在生物的神经传导中,神经元接受多个神经的输入电位,当电位超过一定值时,该神经元激活,输出一个变换后的神经电位值.而在神经网络的设计中引入了这一概念,来增强神经网络的非线性能力,更好的模拟自然界.所以激活函数的主要目的是为了引入非线性能力,即输出不是输入的线性组合. 假设下图中的隐藏层使用的为线性激活函数(恒等激活函数:a=g(z)),可以看出,当激活函数为线性激活函数时,

OpenCV 图像处理:白化(whitening)

原理 图像白化(whitening)可用于对过度曝光或低曝光的图片进行处理,处理的方式就是改变图像的平均像素值为 0 ,改变图像的方差为单位方差 1.我们需要先计算原图像的均值和方差,然后对原图像的每个像素值做变换.假设图像 P 有 I 行 J 列,每个像素的值为 pij, 均值和方差的计算公式如下. 变换后新图像的每个像素值 xij 为 OpenCV 实现 用 OpenCV 的内置函数计算均值和方差,然后对遍历每个像素值并对每个像素做变换.这里需要注意的是变换后的像素值肯定是有一部分会是负值(

白化(Whitening) PCA白化 ZCA白化

白化是一种重要的预处理过程,其目的就是降低输入数据的冗余性,使得经过白化处理的输入数据具有如下性质:(i)特征之间相关性较低:(ii)所有特征具有相同的方差. 白化处理分PCA白化和ZCA白化,PCA白化保证数据各维度的方差为1,而ZCA白化保证数据各维度的方差相同.PCA白化可以用于降维也可以去相关性,而ZCA白化主要用于去相关性,且尽量使白化后的数据接近原始输入数据. 1. PCA白化 根据白化的两个要求,我们首先是降低特征之间的相关性.在PCA中,我们选取前K大的特征值的特征向量作为投影方

PCA和Whitening

PCA: PCA的具有2个功能,一是维数约简(可以加快算法的训练速度,减小内存消耗等),一是数据的可视化. PCA并不是线性回归,因为线性回归是保证得到的函数是y值方面误差最小,而PCA是保证得到的函数到所降的维度上的误差最小.另外线性回归是通过x值来预测y值,而PCA中是将所有的x样本都同等对待. 在使用PCA前需要对数据进行预处理,首先是均值化,即对每个特征维,都减掉该维的平均值,然后就是将不同维的数据范围归一化到同一范围,方法一般都是除以最大值.但是比较奇怪的是,在对自然图像进行均值处理时

Deep Learning by Andrew Ng --- PCA and whitening

这是UFLDL的编程练习.具体教程参照官网. PCA PCA will find the priciple direction and the secodary direction in 2-dimention examples. then x~(i)=x(i)rot,1=uT1x(i)∈R. is big when x(i)rot,2=uT2x(i) was small. so PCA drop x(i)rot,2=uT2x(i) approximate them with 0's. Whit

UFLDL教程之(三)PCA and Whitening exercise

Exercise:PCA and Whitening 第0步:数据准备 UFLDL下载的文件中,包含数据集IMAGES_RAW,它是一个512*512*10的矩阵,也就是10幅512*512的图像 (a)载入数据 利用sampleIMAGESRAW函数,从IMAGES_RAW中提取numPatches个图像块儿,每个图像块儿大小为patchSize,并将提取到的图像块儿按列存放,分别存放在在矩阵patches的每一列中,即patches(:,i)存放的是第i个图像块儿的所有像素值 (b)数据去均

UFLDL教程笔记及练习答案二(预处理:主成分分析和白化)

首先将本节主要内容记录下来,然后给出课后习题的答案. 笔记: 1:首先我想推导用SVD求解PCA的合理性. PCA原理:假设样本数据X∈Rm×n,其中m是样本数量,n是样本的维数.PCA降维的目的就是为了使将数据样本由原来的n维降低到k维(k<n).方法是找数据随之变化的主轴,在Andrew Ng的网易公开课上我们知道主方向就是X的协方差所对应的最大特征值所对应的特征向量的方向(前提是这里X在维度上已经进行了均值归一化).在matlab中我们通常可以用princomp函数来求解,详细见:http

PAC和白化练习之处理二维数据

在很多情况下,我们要处理的数据的维度很高,需要提取主要的特征进行分析这就是PAC(主成分分析),白化是为了减少各个特征之间的冗余,因为在许多自然数据中,各个特征之间往往存在着一种关联,为了减少特征之间的关联,需要用到所谓的白化(whitening). 首先下载数据pcaData.rar,下面要对这里面包含的45个2维样本点进行PAC和白化处理,数据中每一列代表一个样本点. 第一步 画出原始数据: 第二步:执行PCA,找到数据变化最大的方向: 第三步:将原始数据投射到上面找的两个方向上: 第四步: