【CF815D】Karen and Cards 单调栈+扫描线

【CF815D】Karen and Cards

题意:一张卡片有三个属性a,b,c,其上限分别为A,B,C,现在有n张卡片,定义一张卡片能打败另一张卡片当且仅当它的至少两项属性要严格大于另一张的对应属性。问在所有可能的卡片中,有多少种能打败这全部n张卡。

n,A,B,C<=500000

题解:我们反过来,统计哪些卡片不能打败全部的卡。

我们先确定一个属性c,那么对于某张卡片(ai,bi,ci),如果c<=ci,则要求!(a>ai&&b>bi);如果c>ci,则要求a<=ai&&b<=bi。这两种情况都可以用平面上的两个矩形来表示。

那么我们要做的就是动态维护这些矩形的并,发现矩形的并一定越来越小,反过来就是越来越大,我们用单调栈预处理一下,然后用扫描线统计即可。

#include <cstring>
#include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn=500010;
typedef long long ll;
ll ans,sum;
int n,A,B,C,top,tx,ty;
struct node
{
	int a,b,c;
}p[maxn];
int st[maxn],x[maxn],y[maxn];
inline int rd()
{
	int ret=0,f=1;	char gc=getchar();
	while(gc<‘0‘||gc>‘9‘)	{if(gc==‘-‘)	f=-f;	gc=getchar();}
	while(gc>=‘0‘&&gc<=‘9‘)	ret=ret*10+(gc^‘0‘),gc=getchar();
	return ret*f;
}
bool cmpa(const node &a,const node &b)
{
	return a.a<b.a;
}
bool cmpc(const node &a,const node &b)
{
	return a.c>b.c;
}
int main()
{
	n=rd(),A=rd(),B=rd(),C=rd();
	int i,j;
	for(i=1;i<=n;i++)	p[i].a=rd(),p[i].b=rd(),p[i].c=rd();
	sort(p+1,p+n+1,cmpa);
	for(i=1;i<=n;i++)
	{
		while(top&&p[i].b>p[st[top]].b)	top--;
		st[++top]=i;
	}
	sum=1ll*A*B,st[top+1]=0;
	for(i=1;i<=top;i++)
	{
		sum-=1ll*(p[st[i]].a-p[st[i-1]].a)*p[st[i]].b;
		for(j=p[st[i-1]].a+1;j<=p[st[i]].a;j++)	y[j]=p[st[i]].b;
		for(j=p[st[i]].b;j>p[st[i+1]].b;j--)	x[j]=p[st[i]].a;
	}
	sort(p+1,p+n+1,cmpc);
	for(tx=ty=j=1,i=C;i;i--)
	{
		for(;j<=n&&p[j].c>=i;j++)
		{
			for(;tx<=p[j].a;tx++)	sum-=B-max(y[tx],ty-1);
			for(;ty<=p[j].b;ty++)	sum-=A-max(x[ty],tx-1);
		}
		ans+=sum;
	}
	printf("%lld",ans);
	return 0;
}

原文地址:https://www.cnblogs.com/CQzhangyu/p/8443851.html

时间: 2024-11-10 10:41:25

【CF815D】Karen and Cards 单调栈+扫描线的相关文章

【bzoj4540】[Hnoi2016]序列 单调栈+离线+扫描线+树状数组区间修改

题目描述 给出一个序列,多次询问一个区间的所有子区间最小值之和. 输入 输入文件的第一行包含两个整数n和q,分别代表序列长度和询问数.接下来一行,包含n个整数,以空格隔开,第i个整数为ai,即序列第i个元素的值.接下来q行,每行包含两个整数l和r,代表一次询问. 输出 对于每次询问,输出一行,代表询问的答案. 样例输入 5 5 5 2 4 1 3 1 5 1 3 2 4 3 5 2 5 样例输出 28 17 11 11 17 题解 单调栈+离线+扫描线+树状数组区间修改 首先把使用单调栈找出每个

[JXOI2017]颜色 线段树扫描线 + 单调栈

---题面--- 题解: 首先题目要求删除一些颜色,换个说法就是要求保留一些颜色,那么观察到,如果我们设ll[i]和rr[i]分别表示颜色i出现的最左边的那个点和最右边的那个点,那么题目就是在要求我们选出的区间要满足区间[l, r]内所有颜色的max(rr[i]) <= r,并且min(ll[i]) >= l. 因为是区间相关的问题,又涉及到左右端点,因此我们考虑扫描线,那么考虑如何维护它. 因为每个颜色的ll[i]和rr[i]可以看做构成了一个区间,那么现在已经进入线段树的节点就分2种情况.

51NOD 1962 区间计数 单调栈+二分 / 线段树+扫描线

 区间计数 基准时间限制:1.5 秒 空间限制:262144 KB 分值: 80 两个数列 {An} , {Bn} ,请求出Ans, Ans定义如下: Ans:=Σni=1Σnj=i[max{Ai,Ai+1,...,Aj}=max{Bi,Bi+1,...,Bj}] 注:[ ]内表达式为真,则为1,否则为0. 1≤N≤3.5×1051≤Ai,Bi≤N 样例解释: 7个区间分别为:(1,4),(1,5),(2,4),(2,5),(3,3),(3,5),(4,5) Input 第一行一个整数N 第二行

Codeforces Round #460 D. Karen and Cards

Description Karen just got home from the supermarket, and is getting ready to go to sleep. After taking a shower and changing into her pajamas, she looked at her shelf and saw an album. Curious, she opened it and saw a trading card collection. She re

(单调栈)poj-2559 Largest Rectangle in a Histogram

A histogram is a polygon composed of a sequence of rectangles aligned at a common base line. The rectangles have equal widths but may have different heights. For example, the figure on the left shows the histogram that consists of rectangles with the

【单调栈】hdu1506 Largest Rectangle in a Histogram

单调栈的介绍及一些基本性质 http://blog.csdn.net/liujian20150808/article/details/50752861 依次把矩形塞进单调栈,保持其单增,矩形中的元素是一个三元组,存储其位置,高度,以及以其为高度的情况下,大矩形的左边界最多扩展到哪里. 每次将新的元素塞进栈的时候,其左边界就是其左侧第一个小于它的矩形的位置+1. 然后,每个矩形出栈的时候,记录其右边界为当前往栈里面塞的矩形的位置-1,然后更新答案即可. 注意最后把所有的矩形出栈,更新答案. #in

BZOJ 3238 AHOI 2013 差异 后缀数组+单调栈

题目大意: 思路:一看各种后缀那就是后缀数组没跑了. 求出sa,height之后就可以乱搞了.对于height数组中的一个值,height[i]来说,这个值能够作为lcp值的作用域只在左边第一个比他小的位置到右边第一个比他小的位置.这个东西很明显可以倍增RMQ+二分/单调栈. 之后就是数学题了 Σlen[Ti] + len[Tj] = (len + 1) * len * (len - 1),之后吧所有求出来的Σ2 * lcp(Ti,Tj)减掉就是答案. 记得答案开long long CODE:

51nod 1215 数组的宽度&amp;poj 2796 Feel Good(单调栈)

单调栈求每个数在哪些区间是最值的经典操作. 把数一个一个丢进单调栈,弹出的时候[st[top-1]+1,i-1]这段区间就是弹出的数为最值的区间. poj2796 弹出的时候更新答案即可 #include<iostream> #include<cstdlib> #include<cstring> #include<cstdio> #include<algorithm> #include<queue> #include<cmath

[poj3250]单调栈 Bad Hair Day

解题关键:将每头牛看到的牛头数总和转化为每头牛被看到的次数,然后用单调栈求解,其实做这道题的目的只是熟悉下单调栈 此题为递减栈 1 #include<cstdio> 2 #include<cstring> 3 #include<algorithm> 4 #include<cstdlib> 5 #include<stack> 6 #include<iostream> 7 using namespace std; 8 typedef lo