下面的代码展示了如何利用重入来执行升级缓存后的锁降级(为简单起见,省略了异常处理):
class CachedData {
Object data;
volatile boolean cacheValid;
ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
void processCachedData() {
rwl.readLock().lock();
if (!cacheValid) {
// Must release read lock before acquiring write lock
rwl.readLock().unlock();
rwl.writeLock().lock();
// Recheck state because another thread might have acquired
// write lock and changed state before we did.
if (!cacheValid) {
data = ...
cacheValid = true;
}
// Downgrade by acquiring read lock before releasing write lock
rwl.readLock().lock();
rwl.writeLock().unlock(); // Unlock write, still hold read
}
use(data);
rwl.readLock().unlock();
}
}
在使用某些种类的 Collection 时,可以使用 ReentrantReadWriteLock 来提高并发性。通常,在预期 collection 很大,读取者线程访问它的次数多于写入者线程,并且 entail 操作的开销高于同步开销时,这很值得一试。例如,以下是一个使用 TreeMap 的类,预期它很大,并且能被同时访问。
class RWDictionary {
private final Map<String, Data> m = new TreeMap<String, Data>();
private final ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
private final Lock r = rwl.readLock();
private final Lock w = rwl.writeLock();
public Data get(String key) {
r.lock();
try { return m.get(key); }
finally { r.unlock(); }
}
public String[] allKeys() {
r.lock();
try { return m.keySet().toArray(); }
finally { r.unlock(); }
}
public Data put(String key, Data value) {
w.lock();
try { return m.put(key, value); }
finally { w.unlock(); }
}
public void clear() {
w.lock();
try { m.clear(); }
finally { w.unlock(); }
}
}
原文地址:http://blog.51cto.com/viphyy/2092670
时间: 2024-11-09 01:52:36