BZOJ3309 DZY Loves Math 【莫比乌斯反演】

题目

对于正整数n,定义f(n)为n所含质因子的最大幂指数。例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0。

给定正整数a,b,求sigma(sigma(f(gcd(i,j)))) (i=1..a, j=1..b)。

输入格式

第一行一个数T,表示询问数。

接下来T行,每行两个数a,b,表示一个询问。

输出格式

对于每一个询问,输出一行一个非负整数作为回答。

输入样例

4

7558588 9653114

6514903 4451211

7425644 1189442

6335198 4957

输出样例

35793453939901

14225956593420

4332838845846

15400094813

提示

【数据规模】

T<=10000

1<=a,b<=10^7

题解

前面的推导很套路:

\[ans = \sum\limits_{i = 1}^{n} \sum\limits_{j = 1}^{m} f[gcd(i,j)]\]

\[=\sum\limits_{d = 1}^{n} f[d] * \sum\limits_{i = 1}^{\lfloor \frac{n}{d} \rfloor} \sum\limits_{j = 1}^{\lfloor \frac{m}{d} \rfloor} [gcd(i,j) == 1]\]

\[=\sum\limits_{d = 1}^{n} f[d] * \sum\limits_{i = 1}^{\lfloor \frac{n}{d} \rfloor} \mu(i) * \lfloor \frac{n}{id} \rfloor\lfloor \frac{m}{id} \rfloor\]

\[=\sum\limits_{T = 1}^{n} \lfloor \frac{n}{T} \rfloor\lfloor \frac{m}{T} \rfloor \sum\limits_{d|T} f[d] * \mu(\frac{T}{d})\]

后面那玩意\(g(T) = \sum\limits_{d|T} f[d] * \mu(\frac{T}{d})\)如果能预处理出来,就能\(O(T\sqrt{n})\)计算了

然后我只会\(O(nlogn)\),,,,

去膜题解

要利用\(\mu(i)\)的性质

显然\(i\)有平方项就不用考虑了

所以\(T = \prod\limits_{i = 1}^{k} p_i^{a_i}\)中每个\(a_i\)最多被取掉\(1\)

设最大为\(r\)

所以\(f(T) = r\)或\(r - 1\)

我们设有\(x\)个这样的指数为\(r\),那么剩余的\(k - x\)个质因子的指数就可以任选,有\(2^{k - x}\)中选法

如果\(k \ne x\),\(2^{k - x}\)为偶数,对应\(\mu\)的正负数量相等,最后和为\(0\)

所以只有\(k = x\)时,\(g(T) \ne 0\)

否则我们假使所有的\(f(d)\)都等于\(r\),那么和依旧为\(0\),但是实际上当\(k\)个数都被选的时候\(f(d) = r - 1\),多了一个\(-1\),根据奇偶性,最后会产生\((-1)^{k + 1}\)的贡献

所以此时\(g(T) = (-1)^{k + 1}\)

具体可以先筛出\(\mu(i)\),再由\(\mu(i) \ne 0\)的\(i\)推出所有的\(f(i^x)\),这样做每个数只会被推一次,所以是\(O(n)\)的

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<‘ ‘; puts("");
using namespace std;
const int maxn = 10000005,maxm = 100005,N = 1e7,INF = 1000000000;
inline int read(){
    int out = 0,flag = 1; char c = getchar();
    while (c < 48 || c > 57){if (c == ‘-‘) flag = -1; c = getchar();}
    while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
    return out * flag;
}
int p[maxn],pi,isn[maxn],mu[maxn];
LL g[maxn];
void init(){
    mu[1] = 1;
    for (int i = 2; i <= N; i++){
        if (!isn[i]) p[++pi] = i,mu[i] = -1;
        for (int j = 1; j <= pi && i * p[j] <= N; j++){
            isn[i * p[j]] = true;
            if (i % p[j] == 0){
                mu[i * p[j]] = 0;
                break;
            }
            mu[i * p[j]] = -mu[i];
        }
    }
    for (LL i = 2; i <= N; i++)
        if (mu[i] != 0){
            for (LL j = i,t = -mu[i]; j <= N; j *= i)
                g[j] = t;
        }
    for (int i = 1; i <= N; i++) g[i] += g[i - 1];
}
int main(){
    init();
    int T = read(),n,m;
    LL ans;
    while (T--){
        n = read(); m = read(); ans = 0;
        if (n > m) swap(n,m);
        for (int i = 1,nxt; i <= n; i = nxt + 1){
            nxt = min(n / (n / i),m / (m / i));
            ans += 1ll * (n / i) * (m / i) * (g[nxt] - g[i - 1]);
        }
        printf("%lld\n",ans);
    }
    return 0;
}

原文地址:https://www.cnblogs.com/Mychael/p/8974560.html

时间: 2024-10-30 17:30:56

BZOJ3309 DZY Loves Math 【莫比乌斯反演】的相关文章

【BZOJ】3309: DZY Loves Math 莫比乌斯反演优化

3309: DZY Loves Math Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0. 给定正整数a,b,求sigma(sigma(f(gcd(i,j)))) (i=1..a, j=1..b). Input 第一行一个数T,表示询问数. 接下来T行,每行两个数a,b,表示一个询问. Output 对于每一个询问,输出一行一个非负整数作为回答. Sample In

【bzoj3309】DZY Loves Math 莫比乌斯反演+线性筛

题目描述 对于正整数x,定义f(x)为x所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0.给定正整数n,m,求$\sum\limits_{i=1}^n\sum\limits_{j=1}^mf(\gcd(i,j))$ 输入 第一行一个数T,表示询问数.接下来T行,每行两个数n,m,表示一个询问. 输出 对于每一个询问,输出一行一个非负整数作为回答. 样例输入 4 7558588 9653114 6514903 445121

bzoj 3309 DZY Loves Math - 莫比乌斯反演 - 线性筛

对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0. 给定正整数a,b,求sigma(sigma(f(gcd(i,j)))) (i=1..a, j=1..b). Input 第一行一个数T,表示询问数. 接下来T行,每行两个数a,b,表示一个询问. Output 对于每一个询问,输出一行一个非负整数作为回答. Sample Input 4 7558588 9653114 6514903 445

BZOJ 3309 DZY Loves Math 莫比乌斯反演

题目大意: 枚举d=gcd(i,j),得到 现在我们只需要知道Σ[d|T]f(d)μ(T/d)的前缀和就行了 设这个函数为g(x) 观察这个函数 由于含平方因子数的μ值都为零,因此我们只考虑μ(T/d)!=0的数 令T=p1^a1*p2^a2*...*pk^ak,d=p1^b1*p2^b2*...*pk^bk 那么0<=(ai-bi)<=1 如果存在ai≠aj(i≠j),那么我们可以将所有的a分为两部分:最大的集合A和非最大的集合B 很显然f值由A中的选取方案决定 对于A中的每种选取方案,μ值

Bzoj3309 DZY Loves Math

Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 992  Solved: 589 Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0. 给定正整数a,b,求sigma(sigma(f(gcd(i,j)))) (i=1..a, j=1..b). Input 第一行一个数T,表示询问数. 接下来T行,每行两个数a,b,表示一个

【莫比乌斯反演】BZOJ3309 DZY Loves Math

Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007)=1, f(1)=0. 给定正整数a,b,求sigma(sigma(f(gcd(i,j)))) (i=1..a, j=1..b).T<=1e4; a,b<=1e7. Solution 一开始没仔细看数据范围然后打了一个每个询问O(n)的,当然T了 (盗一张图) 一开始我按照第二行的做的,里层外层循环都和ab有关,每一层都要sqrt(n)

[BZOJ3568]DZY Loves Math VII

本人BZOJ的处女作. 这题题面还是蛮有趣的吧. 然后三个问题都蛮有意思的. 要保证正确性,出数据还是异常蛋疼啊. 本来各出三题的.但是考虑到是OJ上的题,就搞在一起了.这样代码量就会比较大. [BZOJ3568]DZY Loves Math VII,布布扣,bubuko.com

【BZOJ 3560】 3560: DZY Loves Math V (欧拉函数)

3560: DZY Loves Math V Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 241  Solved: 133 Description 给定n个正整数a1,a2,-,an,求 的值(答案模10^9+7). Input 第一行一个正整数n. 接下来n行,每行一个正整数,分别为a1,a2,-,an. Output 仅一行答案. Sample Input 3 6 10 15 Sample Output 1595 HINT 1<=n<=1

bzoj 3309 DZY Loves Math

LINK:DZY Loves Math 一道比较有意思的数论题 原谅我的智障多调了40min. 可以简单的推式子推出 答案为\(\sum{w=1}^n\frac{n}{w}\frac{m}{w}\sum{x|w}\mu(x)f(\frac{w}{x})\) f函数定义和题目中一致. 考虑后面前缀和怎么求 发现光求f(x)复杂度都比较高.如果我们把f(x)求出再调和级数预处理 那得GG 1e7过不了log+根号 考虑考虑一下\(\mu\)和f的这种形式肯定值有局限 设后面的东西为g(x) 不难发现