python hash()和哈希算法

哈希算法

哈希算法:哈希算法并不是特定的算法而是一类算法的统称,只要是完成这种功能的算法都是哈希算法,哈希算法也叫做散列算法。同时这个过程是不可逆的,无法由key推导出data。判断一个哈希算法是否优秀,要根据算法的离散度和冲突概率来评定。

哈希函数:就是你给我一个值,我就能通过这个函数计算出它的存储地址。然后取出对应的值,不需要遍历查找,只要计算出地址,需要查询的值就找到了。

哈希表:又称散列表,其定义是根据一个哈希函数将集合S中的关键字映射到一个表中,这个表就称为哈希表,而这种方法就称为Hashing。

原文地址:https://www.cnblogs.com/weihengblog/p/8559135.html

时间: 2024-10-22 02:11:03

python hash()和哈希算法的相关文章

consistent hash(一致性哈希算法)

一.产生背景 今天咱不去长篇大论特别详细地讲解consistent hash,我争取用最轻松的方式告诉你consistent hash算法是什么,如果需要深入,Google一下~. 举个栗子吧: 比如有 N 个 cache 服务器,需要将一个object 映射到 N 个 cache 上,我们可以用类似下面的方法计算 object 的 hash 值,然后均匀的映射到到 N 个 cache 上: hash(object)%N 比如object是“hello”,hash(object)是100,N为3

扩展封装暴雪哈希算法(blizard hash algorithm),并与STL map进行操作性能上的比较

问题描述: 1.blizard hash algorithm 是众所周知的算法,关于它极小的碰撞概率和实现的简洁性一直为热爱技术的朋友津津乐道: 2.blizard hash algorithm 有个致命的问题就是它的实现受制于一个固定的(预先开辟的buffer)的限制,暴雪给出的是1024,也即当hash table 的填充的元素(key value pair)查过1024时,就没办法再往里面进行key value 对填充,这极大的限制了它的使用.在实现的应用,我们经常会向hash table

SHA1 安全哈希算法(Secure Hash Algorithm)

安全哈希算法(Secure Hash Algorithm)主要适用于数字签名标准 (Digital Signature Standard DSS)里面定义的数字签名算法(Digital Signature Algorithm DSA).对于长度小于2^64位的消息,SHA1会产生一个160位的消息摘要.当接收到消息的时候,这个消息摘要可以用来验证数据的完整性.在传输的过程中,数据很可能会发生变化,那么这时候就会产生不同的消息摘要. SHA1有如下特性:不可以从消息摘要中复原信息:两个不同的消息不

hash环/consistent hashing一致性哈希算法

一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT)实现算法,设计目标是为了解决因特网中的热点(Hot spot)问题,初衷和CARP十分类似.一致性哈希修正了CARP使用的简 单哈希算法带来的问题,使得分布式哈希(DHT)可以在P2P环境中真正得到应用. 一致性hash算法提出了在动态变化的Cache环境中,判定哈希算法好坏的四个定义: 1.平衡性(Balance):平衡性是指哈希的结果能够尽可能分布到所有的缓冲中去,这样可以使得所有的缓冲空间都得到利用.很多哈希算法都能够满

分布式_理论_08_Consistent Hash(一致性哈希算法)

一.前言 五.参考资料 1.分布式理论(八)—— Consistent Hash(一致性哈希算法) 原文地址:https://www.cnblogs.com/shirui/p/9660846.html

Java进阶(五十七)-基于感知哈希算法的图像配准

Java进阶(五十七)-基于感知哈希算法的pHash图像配准算法 ??毕业论文提交之后,老师交给自己一项任务:图像配准,也就是给你两幅图像,通过系统来判定两幅图像是否为同一副图像.自己作为这一方面的小白,先去网上搜索一下相应的检测方法,当然有现成的API调用最好,花钱也无所谓. ??我们这里采用的基础关键技术叫做 "感知哈希算法"(Perceptual hash algorithm),它的作用是对每张图片生成一个"指纹"(fingerprint)字符串,然后比较不同

转(一致性哈希算法(consistent hashing))

转自:http://blog.csdn.net/cywosp/article/details/23397179 一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT)实现算法,设计目标是为了解决因特网中的热点(Hot spot)问题,初衷和CARP十分类似.一致性哈希修正了CARP使用的简 单哈希算法带来的问题,使得分布式哈希(DHT)可以在P2P环境中真正得到应用. 一致性hash算法提出了在动态变化的Cache环境中,判定哈希算法好坏的四个定义: 1.平衡性(Balance)

一致性哈希算法原理

一致性Hash算法背景 一致性哈希算法在1997年由麻省理工学院的Karger等人在解决分布式Cache中提出的,设计目标是为了解决因特网中的热点(Hot spot)问题,初衷和CARP十分类似.一致性哈希修正了CARP使用的简单哈希算法带来的问题,使得DHT可以在P2P环境中真正得到应用. 但现在一致性hash算法在分布式系统中也得到了广泛应用,研究过memcached缓存数据库的人都知道,memcached服务器端本身不提供分布式cache的一致性,而是由客户端来提供,具体在计算一致性has

一致性哈希算法(consistent hashing)(转)

原文链接:每天进步一点点——五分钟理解一致性哈希算法(consistent hashing) 一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT)实现算法,设计目标是为了解决因特网中的热点(Hot spot)问题,初衷和CARP十分类似.一致性哈希修正了CARP使用的简 单哈希算法带来的问题,使得分布式哈希(DHT)可以在P2P环境中真正得到应用. 一致性hash算法提出了在动态变化的Cache环境中,判定哈希算法好坏的四个定义: 1.平衡性(Balance):平衡性是指哈希的