机器学习算法 --- 逻辑回归及梯度下降

一、逻辑回归简介

  logistic回归又称logistic回归分析,是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断,经济预测等领域。

  logistic回归是一种广义线性回归(generalized linear model),因此与多重线性回归分析有很多相同之处。

  其公式如下:

        

  其图像如下:

        

  我们通过观察上面的图像可以发现,逻辑回归的值域为(0, 1),当输入为0时,其输出为0.5;当输入小于0,并且越来越小时,其输出越来越接近于0;相反的,当其输入大于0,并且越来越大时,其输出越来越接近于1。

  通常我们使用线性回归来预测值,但逻辑回归随有“回归”二字,却通常是用来解决二分类问题的。

  当其输出大于0.5时,我们可以认为该样本属于甲类;小于0.5时,认为该样本属于已类。

  但是由于一个样本数据通常会有多个特征,我们不能将其直接带入logistic回归公式中,所以,就需要借助之前所介绍的线性回归,使该样本的多个特征值生成一个特定的值,在带入公式中,对其分类,所以z的表达式如下:

    

  即可得到对于一个数据关于逻辑回归的详细表达式:

    

  通过上式,我们就可以对一个任意数据进行逻辑回归分析了,但是这当中存在一个问题,即关于θ的取值,只有公式中的θ已知,我们才能对一个未分类的数据运用此公式,那么该如何求得θ呢?

请看下面的公式推导。

二、Logistic Regression公式推导

  在上面,我们得到  后,需要求得θ,关于如何求得θ,将在此进行详细分析。

  通常在机器学习中,我们常常有一个过程叫训练,所谓训练,即通过已知分类(或标签)的数据,求得一个模型(或分离器),然后使用这个模型对未知标签的数据打上标签(或者对其进行分类)。

  所以,我们使用样本(即已知分类的数据),进行一系列的估算,得到θ。这个过程在概率论中叫做参数估计。

  在此,我们将使用极大似然估计的推导过程,求得关于计算θ的公式:

    (1) 首先我们令:

      

    (2) 将上述两式整合:

        

    (3) 求其似然函数:

      

    (4) 对其似然函数求对数:

      

    (5) 当似然函数为最大值时,得到的θ即可认为是模型的参数。求似然函数的最大值,我们可以使用一种方法,梯度上升,但我们可以对似然函数稍作处理,使之变为梯度下降,然后使用梯度下降的思想来求解此问题,变换

  的表达式如下:

       (由于乘了一个负的系数,所以梯度上升变梯度下降。)

    (6) 因为我们要使用当前的θ值通过更新得到新的θ值,所以我们需要知道θ更新的方向(即当前θ是加上一个数还是减去一个数离最终结果近),所以得到J(θ)后对其求导便可得到更新方向(为什么更新方向这么求?以及得到更新方向后为什么按照下面的式子处理?请看下方的梯度下降公式的演绎推导),求导过程如下:

      

    (7) 得到更新方向后便可使用下面的式子不断迭代更新得到最终结果。

      

三、梯度下降公式的演绎推导

  关于求解函数的最优解(极大值和极小值),在数学中我们一般会对函数求导,然后让导数等于0,获得方程,然后通过解方程直接得到结果。但是在机器学习中,我们的函数常常是多维高阶的,得到导数为0的方程后很难直接求解(有些时候甚至不能求解),所以就需要通过其他方法来获得这个结果,而梯度下降就是其中一种。

  对于一个最简单的函数:, 我们该如何求出y最小是x的值呢(不通过解2x = 0的方法)?  

    (1) 首先对x任取一个值,比如x = -4,可以得到一个y值。  

    (2) 求得更新方向(如果不求更新方向对x更新,比如x-0.5,或x+0.5,得到图像如下)。

      可以发现,我们如果是向负方向更新x,那么我就偏离了最终的结果,此时我们应该向正方向更新,所以我们在对x更新前需要求得x的更新方向(这个更新方向不是固定的,应该根据当前值确定,比如当x=4时,应向负方向更新)

      求其导函数在这一点的值,y‘ = 2x,x = -4, y‘ = -8,那么它的更新方向就是y‘,对x更新我们只需x:=x-α·y‘(α(大于0)为更新步长,在机器学习中,我们叫它学习率)。

      PS:之前说了是多维高阶方程,无法求解,而不是不能对其求导,所以可以对其求导,然后将当前x带入。

    (3) 不断重复之前的(1),(2)步,直到x收敛。

  

  梯度下降方法:

    对于这个式子,如果:

      (1) m是样本总数,即每次迭代更新考虑所有的样本,那么就叫做批量梯度下降(BGD),这种方法的特点是很容易求得全局最优解,但是当样本数目很多时,训练过程会很慢。当样本数量很少的时候使用它。

      (2)当m = 1,即每次迭代更新只考虑一个样本,公式为,叫做随机梯度下降(SGD),这种方法的特点是训练速度快,但是准确度下降,并不是全局最优。比如对下列函数(当x=9.5时,最终求得是区部最优解):

      (3) 所以综上两种方法,当m为所有样本数量的一部分(比如m=10),即我们每次迭代更新考虑一小部分的样本,公式为,叫做小批量梯度下降(MBGD),它克服了上述两种方法的缺点而又兼顾它们的优点,在实际环境中最常被使用。

 

原文地址:https://www.cnblogs.com/God-Li/p/8999023.html

时间: 2024-10-12 11:19:34

机器学习算法 --- 逻辑回归及梯度下降的相关文章

逻辑回归和梯度下降简单应用案例

实例: 我们将建立一个逻辑回归模型来预测一个学生是否被大学录取. 假设你是一个大学系的管理员,你想根据两次考试的结果来决定每个申请人的录取机会. 你有以前的申请人的历史数据,你可以用它作为逻辑回归的训练集. 对于每一个培训例子,你有两个考试的申请人的分数和录取决定. 为了做到这一点,我们将建立一个分类模型,根据考试成绩估计入学概率. data.txt: 34.62365962451697,78.0246928153624,0 30.28671076822607,43.89499752400101

斯坦福大学机器学习课程笔记: 逻辑回归以及梯度下降

逻辑回归的梯度下降计算

J=0;dw1=0;dw2=0;db=0; for i = 1 to m z(i) = wx(i)+b; a(i) = sigmoid(z(i)); J += -[y(i)log(a(i))+(1-y(i))log(1-a(i)); dz(i) = a(i)-y(i); dw1 += x1(i)dz(i); dw2 += x2(i)dz(i); db += dz(i); J/= m; dw1/= m; dw2/= m; db/= m; w=w-alpha*dw b=b-alpha*db 原文地址

回归、梯度下降

回归(regression).梯度下降(gradient descent) 发表于332 天前 ? 技术, 科研 ? 评论数 3 ? 被围观 1152 次+ 本文由LeftNotEasy所有,发布于http://leftnoteasy.cnblogs.com.如果转载,请注明出处,在未经作者同意下将本文用于商业用途,将追究其法律责任. 前言: 上次写过一篇关于贝叶斯概率论的数学,最近时间比较紧,coding的任务比较重,不过还是抽空看了一些机器学习的书和视频,其中很推荐两个:一个是 stanfo

机器学习实战-逻辑回归

什么是回归? 假设现在有些数据点,我用直线对这些点进行拟合(该线叫做最佳拟合直线),这个拟合的过程就叫做回归. Logistic回归? 这里,Logistic回归进行分类的主要思想:根据现有数据对分类的边界线建立回归公式,以此边界线进行分类.这里的回归指的是最佳拟合,就是要找到边界线的回归公式的最佳拟合的参数集.训练时使用最优化算法寻找最佳拟合参数. 基于Logistic回归和Sigmoid函数的分类 对于边界线建立的回归函数,能够接受所有的输入然后预测出类别.例如,对于二分类的情况下,上述函数

回归和梯度下降

回归与梯度下降: 回归在数学上来说是给定一个点集,能够用一条曲线去拟合之,如果这个曲线是一条直线,那就被称为线性回归,如果曲线是一条二次曲线,就被称为二次回归,回归还有很多的变种,如locally weighted回归,logistic回归,等等,这个将在后面去讲. 用一个很简单的例子来说明回归,这个例子来自很多的地方,也在很多的open source的软件中看到,比如说weka.大概就是,做一个房屋价值的评估系统,一个房屋的价值来自很多地方,比如说面积.房间的数量(几室几厅).地段.朝向等等,

机器学习入门:线性回归及梯度下降

机器学习入门:线性回归及梯度下降 本文会讲到: (1)线性回归的定义 (2)单变量线性回归 (3)cost function:评价线性回归是否拟合训练集的方法 (4)梯度下降:解决线性回归的方法之一 (5)feature scaling:加快梯度下降执行速度的方法 (6)多变量线性回归   Linear Regression 注意一句话:多变量线性回归之前必须要Feature Scaling! 方法:线性回归属于监督学习,因此方法和监督学习应该是一样的,先给定一个训练集,根据这个训练集学习出一个

机器学习(一):梯度下降、神经网络、BP神经网络

这几天围绕论文A Neural Probability Language Model 看了一些周边资料,如神经网络.梯度下降算法,然后顺便又延伸温习了一下线性代数.概率论以及求导.总的来说,学到不少知识.下面是一些笔记概要. 一. 神经网络 神经网络我之前听过无数次,但是没有正儿八经研究过.形象一点来说,神经网络就是人们模仿生物神经元去搭建的一个系统.人们创建它也是为了能解决一些其他方法难以解决的问题. 对于单一的神经元而言,当生物刺激强度达到一定程度,其就会被激发,然后做出一系列的反应.模仿这

4.机器学习之逻辑回归算法

理论上讲线性回归模型既可以用于回归,也可以用于分类.解决回归问题,可以用于连续目标值的预测.但是针对分类问题,该方法则有点不适应,因为线性回归的输出值是不确定范围的,无法很好的一一对应到我们的若干分类中.即便是一个二分类,线性回归+阈值的方式,已经很难完成一个鲁棒性很好的分类器了.为了更好的实现分类,逻辑回归诞生了.逻辑回归(Logistic Regression)主要解决二分类问题,用来表示某件事情发生的可能性.逻辑回归是假设数据服从Bernoulli分布的,因此LR也属于参数模型,他的目的也