学了一下扩展欧拉定理,不会证,记了个结论,笔记的话,随便去网上搜一搜吧.
-bzoj3884:上帝与集合的正确用法
无脑板子题额
#include <cstdio> #include <cstring> #include <algorithm> typedef long long LL; inline int Pow(int x,int y,int P){ int ret=1; while(y){ if(y&1)ret=(LL)ret*x%P; x=(LL)x*x%P,y>>=1; } return ret; } inline int Phi(int x){ if(x==1)return 1; int i,ret=x; for(i=2;i*i<=x;++i) if(x%i==0){ ret=ret/i*(i-1); while(x%i==0)x/=i; } if(x!=1)ret=ret/x*(x-1); return ret; } inline int Power(int P){ if(P==1)return 0; int phi=Phi(P); return Pow(2,Power(phi)+phi,P); } int main(){ int T,P; scanf("%d",&T); while(T--){ scanf("%d",&P); printf("%d\n",Power(P)); } return 0; }
Kod
-bzoj4869:[Shoi2017]相逢是问候
见https://blog.sengxian.com/solutions/bzoj-4869
这道题的小细节还是比较坑的啊,比如:1.多加一个1;2.判断上一层和上一层模数的大小关系.(网上的人大概都是判0或者试乘,我写的是试乘,因为我不会证明判0的正确性,而且也看不懂除了试乘以外的方法)(我的试乘比较蠢,但是他的正确性我应该是证出来了)
#include <cmath> #include <cstdio> #include <cstring> #include <algorithm> typedef long long LL; const int A=50; const int N=50010; const int F=1<<15; const int oo=100000000; int n,m,k,P,cmp,hp,phi[A],a[N],mi1[A][F+10],mi2[A][F+10]; inline int Pow(int x,int y,int P,int cur){ int ret=(LL)mi1[cur][y&(F-1)]*mi2[cur][y>>15]%P; return ret; } inline int Pow_(int x,int y,int P,int cur){ if(y>=cmp)return Pow(x,y,P,cur); LL ret=1; int i; for(i=1;i<=y;++i){ ret*=x; if(ret>=P)return Pow(x,y,P,cur); } return ret+oo; } inline int Phi(int x){ if(x==1)return 1; int i,ret=x; for(i=2;i*i<=x;++i) if(x%i==0){ ret=ret/i*(i-1); while(x%i==0)x/=i; } if(x!=1)ret=ret/x*(x-1); return ret; } inline int Power(int rest,int aim,int P,int cur){ if(!rest)return aim<P?aim+oo:aim%P; int ret=Power(rest-1,aim,phi[cur+1],cur+1); if(ret<oo)return Pow(k,ret+phi[cur+1],P,cur); return Pow_(k,ret-oo,P,cur); } struct Segment_Tree{ Segment_Tree *ch[2]; int hp,sum; inline void pushup(){ sum=(ch[0]->sum+ch[1]->sum)%P; hp=ch[0]->hp+ch[1]->hp; } }*root,node[N<<2]; int sz; #define newnode (node+(sz++)) #define mid ((l+r)>>1) inline void build(Segment_Tree *&p,int l,int r){ p=newnode; if(l==r){ p->hp=hp; p->sum=a[l]; return; } build(p->ch[0],l,mid); build(p->ch[1],mid+1,r); p->pushup(); } inline void dfs(Segment_Tree *p,int l,int r){ if(!p->hp)return; if(l==r){ --p->hp; p->sum=k==1?1:Power(hp-p->hp,a[l],P,0); if(p->sum>=oo)p->sum-=oo; return; } dfs(p->ch[0],l,mid); dfs(p->ch[1],mid+1,r); p->pushup(); } inline void update(Segment_Tree *p,int l,int r,int z,int y){ if(z<=l&&r<=y){ dfs(p,l,r); return; } if(z<=mid)update(p->ch[0],l,mid,z,y); if(mid<y)update(p->ch[1],mid+1,r,z,y); p->pushup(); } inline int query(Segment_Tree *p,int l,int r,int z,int y){ if(z<=l&&r<=y)return p->sum; int ret=0; if(z<=mid)ret+=query(p->ch[0],l,mid,z,y); if(mid<y)ret+=query(p->ch[1],mid+1,r,z,y); return ret%P; } inline void Init(){ scanf("%d%d%d%d",&n,&m,&P,&k); int cur=P,step=-1,i,j; while(true){ phi[++step]=cur; if(cur==1)break; cur=Phi(cur); } hp=step; phi[++hp]=1; for(i=0;i<=hp;++i){ mi1[i][0]=1%phi[i]; for(j=1;j<F;++j) mi1[i][j]=(LL)mi1[i][j-1]*k%phi[i]; cur=(LL)mi1[i][F-1]*k%phi[i]; mi2[i][0]=1%phi[i]; for(j=1;j<F;++j) mi2[i][j]=(LL)mi2[i][j-1]*cur%phi[i]; } cmp=k==1?0:std::ceil(std::log(P)/std::log(k)); for(i=1;i<=n;++i) scanf("%d",&a[i]); build(root,1,n); } inline void Work(){ int opt,l,r; while(m--){ scanf("%d%d%d",&opt,&l,&r); if(opt){ printf("%d\n",query(root,1,n,l,r)); continue; } update(root,1,n,l,r); } } int main(){ Init(); Work(); return 0; }
Kod
原文地址:https://www.cnblogs.com/TSHugh/p/8781624.html
时间: 2024-10-07 01:34:43