Description
You are given a tree (an acyclic undirected connected graph) with N nodes, and edges numbered 1, 2, 3...N-1.
We will ask you to perfrom some instructions of the following form:
- CHANGE i ti : change the cost of the i-th edge to ti
or - QUERY a b : ask for the maximum edge cost on the path from node a to node b
Input
The first line of input contains an integer t, the number of test cases (t <= 20). t test cases follow.
For each test case:
- In the first line there is an integer N (N <= 10000),
- In the next N-1 lines, the i-th line describes the i-th edge: a line with three integers a b c denotes an edge between a, b of cost c (c<= 1000000),
- The next lines contain instructions "CHANGE i ti" or "QUERY a b",
- The end of each test case is signified by the string "DONE".
There is one blank line between successive tests.
Output
For each "QUERY" operation, write one integer representing its result.
Example
Input: 1 3 1 2 1 2 3 2 QUERY 1 2 CHANGE 1 3 QUERY 1 2 DONE Output: 1 3 本来应该写树链剖分的,但既然要练LCT就敲敲咯……也是调了蛮久
#include<cstdio> #include<cstring> #include<algorithm> #define MN 10010 using namespace std; int p,ca,f; inline int read(){ p=0;ca=getchar();f=1; while(ca<‘0‘||ca>‘9‘) {if (ca==‘-‘) f=-1;ca=getchar();} while(ca>=‘0‘&&ca<=‘9‘) p=p*10+ca-48,ca=getchar(); return p*f; } struct na{ int y,ne,c,nu; }b[MN*2]; int fa[MN],n,t,x,y,c,l[MN],r[MN],num,id[MN],key[MN],ch[MN][2],ma[MN]; bool rt[MN]; inline int max(int a,int b){return a>b?a:b;} inline void update(int x){ ma[x]=max(max(ma[ch[x][0]],ma[ch[x][1]]),key[x]); } inline void rot(int x){ int y=fa[x],kind=ch[y][1]==x; fa[x]=fa[y]; fa[y]=x; ch[y][kind]=ch[x][!kind]; fa[ch[y][kind]]=y; ch[x][!kind]=y; if(rt[y]) rt[y]=0,rt[x]=1;else ch[fa[x]][ch[fa[x]][1]==y]=x; update(y);update(x); } inline void splay(int x){ while(!rt[x]){ if (rt[fa[x]]) rot(x);else if ((ch[fa[fa[x]]][1]==fa[x])==(ch[fa[x]][1]==x)) rot(fa[x]),rot(x);else rot(x),rot(x); } } inline void acc(int u){ int x=0; while(u){ splay(u); rt[ch[u][1]]=1;rt[ch[u][1]=x]=0; update(u); u=fa[x=u]; } } inline void change(int x,int c){ acc(x); key[x]=c; update(x); } inline void lca(int &u,int &v){ acc(v);v=0; while(u){ splay(u); if (!fa[u]) break; rt[ch[u][1]]=1; rt[ch[u][1]=v]=0; update(u); u=fa[v=u]; } } inline int qu(int x,int y){ lca(x,y); return max(ma[y],ma[ch[x][1]]); } inline void in(int x,int y,int c,int nu){ num++; if (!l[x]) l[x]=num;else b[r[x]].ne=num; b[num].y=y;b[num].c=c;b[num].ne=0;b[num].nu=nu;r[x]=num; } inline void dfs(int x){ for (int i=l[x];i;i=b[i].ne) if (!fa[b[i].y]){ fa[b[i].y]=x; id[b[i].nu]=b[i].y; key[b[i].y]=b[i].c; dfs(b[i].y); } } char ss[10]; int main(){ t=read(); ma[0]=-1e9; while(t--){ num=0; memset(rt,1,sizeof(rt)); memset(fa,0,sizeof(fa)); memset(ch,0,sizeof(ch)); memset(l,0,sizeof(l)); n=read(); for (int i=1;i<n;i++){ x=read();y=read();c=read(); in(x,y,c,i); in(y,x,c,i); } fa[1]=-1; dfs(1); fa[1]=0; for(;;){ scanf("%s",ss); if (ss[0]==‘D‘) break; x=read();y=read(); if (ss[0]==‘Q‘) printf("%d\n",qu(x,y));else change(id[x],y); } } }
时间: 2024-10-13 00:42:44