CodeForces 461B Appleman and Tree:Tree dp

题目链接:http://codeforces.com/problemset/problem/461/B

题意:

  给你一棵树(编号从0到n-1,0为根节点),每个节点有黑白两种颜色,其中黑色节点有k+1个。

  现在让你删掉k条边,使得这棵树变成k+1个连通块,并且要保证每个连通块中有且仅有一个黑色节点。

  问你删边的方案有多少种。

题解:

  表示状态:

    dp[i][0/1] = numbers

    表示在节点i所在的连通块中有(1)或没有(0)黑色节点时,节点i的子树的删边方法数

    因为总要保证每个连通块中有且仅有一个黑点,所以最后一定删了恰好k条边,并不用记录当前删了多少边。

  找出答案:

    ans = dp[0][1]

    最终根所在连通块中一定有且仅有一个黑点。

  如何转移:

    将删边的过程反过来考虑。

    将节点i连向它的儿子的边一条条删去,相当于:

      i本身没有儿子,然后将一棵棵子树添加为它的儿子,同时保证合法。

    那么最终的方案取决于三个条件:

      (1)i所在的连通块(简称块i)是否有黑点

      (2)son所在的连通块(简称块son)是否有黑点

      (3)是否删去边(i,son)

    分情况讨论:

      (1)块i有黑点

        a. 块son有黑点,此时只能将边删去,最终的块i有黑点

        b. 块son全是白,此时只能保留这条边,最终的块i有黑点

      (2)i是白色

        a. 块son有黑点,此时删边或不删都可以:

          I. 删边,最终的块i全是白

          II. 不删,最终的块i有黑点

        b. 块son全是白,此时只能保留这条边,最终的块i全是白

    综上:

      dp[now][1] = dp[son][0]*dp[now][1] + dp[son][1]*(dp[now][1]+dp[now][0])

      dp[now][0] = (dp[son][0]+dp[son][1])*dp[now][0]

  边界条件:

    dp[i][c[i]]=1

AC Code:

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <vector>
#define MAX_N 100005
#define MOD 1000000007

using namespace std;

int n;
int c[MAX_N];
long long dp[MAX_N][2];
vector<int> edge[MAX_N];

void read()
{
    cin>>n;
    int x;
    for(int i=1;i<n;i++)
    {
        cin>>x;
        edge[x].push_back(i);
    }
    for(int i=0;i<n;i++)
    {
        cin>>c[i];
    }
}

void dfs(int now)
{
    dp[now][c[now]]=1;
    for(int i=0;i<edge[now].size();i++)
    {
        int temp=edge[now][i];
        dfs(temp);
        long long blk=dp[now][1];
        long long wht=dp[now][0];
        dp[now][1]=(dp[temp][0]*blk+dp[temp][1]*(blk+wht))%MOD;
        dp[now][0]=(dp[temp][0]+dp[temp][1])*wht%MOD;
    }
}

void work()
{
    dfs(0);
    cout<<dp[0][1]<<endl;
}

int main()
{
    read();
    work();
}

原文地址:https://www.cnblogs.com/Leohh/p/8179776.html

时间: 2024-10-06 00:45:30

CodeForces 461B Appleman and Tree:Tree dp的相关文章

Codeforces 461B Appleman and Tree(木dp)

题目链接:Codeforces 461B Appleman and Tree 题目大意:一棵树,以0节点为根节点,给定每一个节点的父亲节点,以及每一个点的颜色(0表示白色,1表示黑色),切断这棵树的k条边,使得树变成k+1个联通分量.保证每一个联通分量有且仅有1个黑色节点.问有多少种切割方法. 解题思路:树形dp,dp[i][0]和dp[i][1]分别表示子树一下的切割方法中,i节点所在联通块不存在黑节点和已经存在一个黑节点的方案数. #include <cstdio> #include &l

Codeforces 461B Appleman and Tree(树形dp)

题目链接:Codeforces 461B Appleman and Tree 题目大意:一棵树,以0节点为根节点,给定每个节点的父亲节点,以及每个点的颜色(0表示白色,1表示黑色),切断这棵树的k条边,使得树变成k+1个联通分量,保证每个联通分量有且仅有1个黑色节点.问有多少种分割方法. 解题思路:树形dp,dp[i][0]和dp[i][1]分别表示子树一下的分割方法中,i节点所在联通块不存在黑节点和已经存在一个黑节点的方案数. #include <cstdio> #include <c

Codeforces 461B - Appleman and Tree 树状DP

一棵树上有K个黑色节点,剩余节点都为白色,将其划分成K个子树,使得每棵树上都只有1个黑色节点,共有多少种划分方案. 个人感觉这题比较难.假设dp(i,0..1)代表的是以i为根节点的子树种有0..1个黑色节点的划分方案数. 当节点i为白色时,对于它的每个孩子的节点处理: 求dp(i, 0)时有: 1,将该节点与孩子节点相连,但要保证孩子节点所在的子树种没有黑色节点: 2,将该节点不与该孩子节点相连,则该孩子节点要保证所在子树种有黑色节点: 即dp(i, 0) = π(dp(j,0 ) + dp(

Codeforces 461B. Appleman and Tree[树形DP 方案数]

B. Appleman and Tree time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standard output Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are color

【树形DP】CODEFORCES 461B Appleman and Tree

通道 题意:一棵树上有K个黑色节点,剩余节点都为白色,将其划分成K个子树,使得每棵树上都只有1个黑色节点,共有多少种划分方案 思路:dp[i][0]和dp[i][1]分别表示i子树所在联通块不存在黑节点和已经存在一个黑节点的方案数 代码: #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> #include<vector> #include<ma

codeforces 461B Appleman and Tree

题意:问你将含有黑白点的无向树使得每个子树中只有一个黑点的方法数. 解题思路:树形dp,dp[i][0/1] 表示 第i 个节点的联通图中是否有 1个黑点的种类数. 解题代码: 1 // File Name: 461c.cpp 2 // Author: darkdream 3 // Created Time: 2015年03月11日 星期三 10时53分22秒 4 5 #include<vector> 6 #include<list> 7 #include<map> 8

Codeforces 148D Bag of mice:概率dp 记忆化搜索

题目链接:http://codeforces.com/problemset/problem/148/D 题意: 一个袋子中有w只白老鼠,b只黑老鼠. 公主和龙轮流从袋子里随机抓一只老鼠出来,不放回,公主先拿. 公主每次抓一只出来.龙每次在抓一只出来之后,会随机有一只老鼠跳出来(被龙吓的了...). 先抓到白老鼠的人赢.若两人最后都没有抓到白老鼠,则龙赢. 问你公主赢的概率. 题解: 表示状态: dp[i][j] = probability to win(当前公主先手,公主赢的概率) i:剩i只白

Codeforces Round #263 (Div. 2) D. Appleman and Tree(树形DP)

题目链接 D. Appleman and Tree time limit per test :2 seconds memory limit per test: 256 megabytes input :standard input output:standard output Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices a

Codeforces 462D Appleman and Tree 树形dp

题目链接:点击打开链接 题意: 给定n个点的树, 0为根,下面n-1行表示每个点的父节点 最后一行n个数 表示每个点的颜色,0为白色,1为黑色. 把树分成若干个联通块使得每个联通块有且仅有一个黑点,问有多少种分法(结果mod1e9+7) 思路: 树形dp,每个点有2个状态,已经归属于某个黑点和未归属于某个黑点. #include <cstdio> #include <vector> #include <iostream> using namespace std; #de