POJ 3280 Cheapest Palindrome ( 区间DP && 经典模型 )

题意 : 给出一个由 n 中字母组成的长度为 m 的串,给出 n 种字母添加和删除花费的代价,求让给出的串变成回文串的代价。

分析 : 

原始模型 ==> 题意和本题差不多,有添和删但是并无代价之分,要求最少操作几次才能是其变成回文串

① 其实细想之后就会发现如果没有代价之分的话删除和增添其实是一样的,那么除了原串原本拥有的最长回文串不用进行考虑处理,其他都需要进行删除或者增添来使得原串变成回文串,所以只要对原串 S 和其反向串 S‘ 找出两者的最长公共子串长度 L 再用总长减去 L 即可

② 也可以用 区间DP 思想进行求解

定义 dp[ i ][ j ] 为区间 [ i, j ] 的最少操作次数,初始化 dp[ i ][ i ] = 0

如果 str[ i ] == str[ j ],则当前区间 [ i, j ] 的数字可从区间 [ i+1, j-1 ] 转移而来,即 dp[i][j] = dp[i+1][j-1]

如果 str[ i ] ! = str[ j ],现只考虑删除操作那么必定要删除左右边界的一个故 dp[i][j] = min( dp[i+1][j], dp[i][j-1] ) + 1

现在看回这题,这题对具体的添加和删除操作都附上了相应的权值,其实只要对上述解法②稍加修改即可

dp[ i ][ j ] 和上面的定义一样,初始化 dp[ i ][ i ] = 0

如果 str[ i ] == str[ j ], 依旧是 dp[i][j] = dp[i+1][j-1]

如果 str[ i ] ! = str[ j ]

此时还是从 dp[i+1][j] 和 dp[i][j-1] 转移到 dp[i][j]

由于有增删区别存在,自然想到取最小,可得下面的转移方程

dp[i][j] = min( dp[i+1][j]+min( delete or add str[i] ) , dp[i][j-1]+min( delete or add str[j] ) )

具体编程的时候枚举区间长度为 dp 的阶段、然后再枚举当前长度下的每一个子串

#include<bits/stdc++.h>
using namespace std;
const int maxn = 2e3 + 10;
int dp[maxn][maxn], ADD[30], DEL[30];
char str[maxn];

int main(void)
{
    int N, M;
    while(~scanf("%d %d %s", &N, &M, str)){

        memset(ADD, 0, sizeof(ADD));
        memset(DEL, 0, sizeof(DEL));

        char ch;
        while(N--){
            scanf(" %c", &ch);
            scanf("%d %d", &ADD[ch-‘a‘], &DEL[ch-‘a‘]);
            //printf("%c %d %d\n", ch, ADD[ch-‘a‘], DEL[ch-‘a‘]);
        }

        for(int i=1; i<=M; i++)
            dp[i][i] = 0;

        for(int i=1; i<M; i++)
            for(int j=0; j+i<M; j++)
                if(str[j] == str[j+i]) dp[j][j+i] = dp[j+1][j+i-1];
                else{
                    int temp1 = dp[j+1][j+i] + min(ADD[str[j]-‘a‘], DEL[str[j]-‘a‘]);
                    int temp2 = dp[j][j+i-1] + min(ADD[str[j+i]-‘a‘], DEL[str[j+i]-‘a‘]);
                    dp[j][j+i] = min(temp1, temp2);
                }

        printf("%d\n", dp[0][M-1]);
    }
    return 0;
}

为什么这样的转移是对的?貌似还是太抽象,下面用样例来跑一下这个 DP

N = 3、M = 4
abcb
a  1000 1100
b   350   700
c   200   800

根据程序有以下结果

长度 == 1

dp[0][1] => a != b => 添 b 代价较小 => dp[0][1] = 350 意义为 "bab" ( 添b了)

dp[1][2] => b != c => 添 c => dp[1][2] = 200 表示 "cbc"

dp[2][3] => c != b => 添 c => dp[2][3] = 200 表示 "cbc"

长度 == 2

dp[0][2] => a != c => 添 c  => dp[0][1] + 200 = 550 表示 "cbabc" ( 注意 dp[0][1] 已经变了 )

dp[1][3] => b == b => dp[2][2] = 0 表示 "bcb"

长度 == 3

dp[0][3] => a != b => 添 b => dp[0][2] + 350 = 900 表示 "bcbabcb"

上述的 添xx 其实是经过了四个值的比较,看程序就知道。

比如最后的 dp[0][3] 实际是比添 a 更加优,如果添 a 的话那么就变成 dp[1][3] + 1000 = 1000 意义是 "abcba"

原文地址:https://www.cnblogs.com/Rubbishes/p/8127790.html

时间: 2024-10-28 20:57:39

POJ 3280 Cheapest Palindrome ( 区间DP && 经典模型 )的相关文章

poj 3280 Cheapest Palindrome(区间DP)

Cheapest Palindrome Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 5995   Accepted: 2922 Description Keeping track of all the cows can be a tricky task so Farmer John has installed a system to automate it. He has installed on each cow a

POJ 3280 Cheapest Palindrome(DP)

题目链接 题意 :给你一个字符串,让你删除或添加某些字母让这个字符串变成回文串,删除或添加某个字母要付出相应的代价,问你变成回文所需要的最小的代价是多少. 思路 :DP[i][j]代表的是 i 到 j 这一段位置变成回文所需的最小的代价. 1 //3280 2 #include <stdio.h> 3 #include <string.h> 4 #include <iostream> 5 6 using namespace std ; 7 8 char sh[2100]

(中等) POJ 3280 Cheapest Palindrome,DP。

Description Keeping track of all the cows can be a tricky task so Farmer John has installed a system to automate it. He has installed on each cow an electronic ID tag that the system will read as the cows pass by a scanner. Each ID tag's contents are

POJ 3280 Cheapest Palindrome (DP)

 Description Keeping track of all the cows can be a tricky task so Farmer John has installed a system to automate it. He has installed on each cow an electronic ID tag that the system will read as the cows pass by a scanner. Each ID tag's contents

[poj]3280 Cheapest Palindrome 题解

[poj]3280 Cheapest Palindrome 区间dp 题意: 给你长度为m的字符串,其中有n种字符,每种字符都有两个值,分别是插入这个字符的代价,删除这个字符的代价,让你求将原先给出的那串字符变成一个回文串的最小代价. M<=2000 设 dp[i][j] 为区间 i~j 的回文串的最小代价 现在考虑怎样从别的状态转移到 区间i~j 三种情况 首先 str[i]==str[j] 那么 dp[i][j] = dp[i+1][j-1] 其次 (i+1)~j 是一个回文串 dp[i][

POJ 3280 Cheapest Palindrome DP题解

看到Palindrome的题目,首先想到的应该是中心问题,然后从中心出发,思考如何解决. DP问题一般是从更加小的问题转化到更加大的问题,然后是从地往上 bottom up地计算答案的. 能得出状态转移方程就好办了,本题的状态转移方程是: if (cowID[i] == cow{j]) tbl[id][i] = tbl[id][i+1];//相等的时候无需改动 else tbl[id][i] = min(tbl[!id][i+1] + cost[cowID[i]-'a'], tbl[!id][i

POJ 3280:Cheapest Palindrome 区间DP好题

Cheapest Palindrome 题目链接: http://poj.org/problem?id=3280 题意: 给出一个只由小写字母组成的串,可以添加或删除一些字母(添加和删除都需要花费且花费不同),求将这个串改变成一个回文串的最小花费. 题解: 设dp[i][j]是将区间[i,j]改变成回文串的最小花费,则两种情况 ①显而易见,当s[i]==s[j]时,dp[i][j]=dp[i+1][j-1] ②当s[i]!=s[j]时,dp[i][j]有四种可能的取值,区间 [i,j-1] 删除

POJ 3280 Cheapest Palindrome(区间DP求改成回文串的最小花费)

题目链接:http://poj.org/problem?id=3280 题目大意:给你一个字符串,你可以删除或者增加任意字符,对应有相应的花费,让你通过这些操作使得字符串变为回文串,求最小花费.解题思路:比较简单的区间DP,令dp[i][j]表示使[i,j]回文的最小花费.则得到状态转移方程: dp[i][j]=min(dp[i][j],min(add[str[i]-'a'],del[str[i]-'a'])+dp[i+1][j]); dp[i][j]=min(dp[i][j],min(add[

POJ 3280 Cheapest Palindrome(区间DP)

 Cheapest Palindrome Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6894   Accepted: 3344 Description Keeping track of all the cows can be a tricky task so Farmer John has installed a system to automate it. He has installed on each co