组合数学--数论

1. N的因子个数

条件:给定任意一个一个正整数N

要求:求其因子的个数

首先给出结论:对于任意的整型N,分解质因数得到N= P1^x1 * P2^x2* …… * Pn^xn;

则N的因子个数M为 M=(x1+1) * (x2+1) * …… *(xn+1);

证明过程:

首先 举个例子吧

24 = 2^3 * 3^1;

其质因子有:为2和3  指数为 3和1

那么对于2 有0 1 2 3四种指数选择,对于3 有0 1两种指数选择

所以 就是4 * 2 = 8 个因子个数

如果还是不懂,那么我们就列举出来吧

2 3

2^0*3^0=1             2^0*3^1=3

2^1*3^0=2             2^1*3^1=6

2^2*3^0=4             2^2*3^1=12

2^3*3^0=8             2^3*3^1=24

结果很清晰了吧??其实这里用到了数学的排列组合的知识

也就是说每一个质因子的不同指数幂与其它质因子相乘,得到的结果一定不会重复

因此能够将所有的因子都列举出来。

所以N的因子数M,我们可以用M=(x1+1) * (x2+1) * …… *(xn+1)表示

2. N!的因子个数

有上面的结论,这个问题就变得明朗多了吧?嘿嘿,不要着急,这里面还有许多细节问题需要我们考虑。

a.  最大的质因子一定不会大于N

b.  N的质因子并不完全包含N!所有的质因子

至于原因是什么,自己想想吧,嘿嘿

那我们就直接说思路了:

首先,我们可以把所有的N以内的质数给打表求出来

然后,求每一个质因子的指数个数,这里用到了一个公式,:

ei=[N/pi^1]+ [N/pi^2]+ …… + [N/pi^n]  其中[]为取整

附:这一步最近又想到了一个更好的方法  int ei=0;while(N)  ei+=(N/=pi);   怎么样??

(想一想为什么,实在想不通你就举个例子试一下)

最后,就是套公式计算了,M=(e1+1)*(e2+1)*……*(en+1)

算了,还是举个例子吧

比如5!

质因子2的指数是 2+1=3;

质因子3的指数是 1;

质因子5的指数是 1;

所以因子个数为 4 * 2 * 2 = 16

5!=120 因子有1 2 3 4 5 6 8 10 12 15 20 24 30 4060 120  刚好16个

3.给定数列的乘积因子个数

其实这个也是基于第一个结论得到的。

给定 a1 a2 a3 …… an;

我们可以找到最大的一个元素Max(a);

把Max以内的素数打表

然后把质因子清零,进行如下循环,就可以找到各个质因子的个数:

for(a=1;a<=n;a++)

for(p=1;p<_;p++ )

if(__) e(p)++;

这样质因子的质数个数就求出来了,然后就可以根据公式M=(e1+1)*(e2+1)*……*(en+1)求出因子个数

时间: 2025-01-06 05:06:09

组合数学--数论的相关文章

hdu 6088 Rikka with Rock-paper-scissors (2017 多校第五场 1004) 【组合数学 + 数论 + 模意义下的FFT】

题目链接 首先利用组合数学知识,枚举两人的总胜场数容易得到 这还不是卷积的形式,直接搞的话复杂度大概是O(n^2)的,肯定会TLE.但似乎和卷积有点像?想半天没想出来..多谢Q巨提醒,才知道可以用下面这个公式进行转化 最后,化得的公式为 另外注意,上式右边是一个卷积的形式,但是,所得和的第一项是不需要加上的(不过图中公式没有体现).结合实际意义大概就是,i==0&&j==0时,gcd(i,j)不存在约数d,虽然0可以被任意正整数整除 & 第一项不为0 #include<bit

codeforces 396A A. On Number of Decompositions into Multipliers(组合数学+数论)

题目链接: codeforces 396A 题目大意: 给出n个数的序列,求取和这个序列的积相同但是序列本身不同的个数. 题目分析: 组合数学的问题,对于每一个数我们可以将它分解质因数,然后统计整个序列的各个质因数的个数. 那么符合要求的序列一定用这些质因数(每个质因数的个数保持不变)组成的,所以我们可以利用组合数学中的插板法,对每个质因数进行划分,划分给n个数(存在一些数没有分到的情况),那么就是Cn?1质因数个数+n?1. 根据乘法原则,总的方案数就是每个质因数的划分数之积. AC代码: #

BZOJ 2142 礼物 组合数学+数论

题目大意:给定n个物品,分给m个人,每个人拿到wi个礼物,问方案数mod P P不一定为质数 首先我们把剩下的礼物也分给一个人 答案明显不变 w[++m]=n-w1-w2-...-wm 然后就会很方便地得到公式: ans=C(n,w1)*C(n-w1,w2)*C(n-w1-w2,w3)*...*C(n-w1-w2-...-w_(m-1),wm) mod P =n!/w1!/w2!/.../wm! mod P 然后p不是质数 我们把P分解 令P=∏pi^ai 我们分别处理,可以得到一次同余方程组a

Codeforces 223APartial Sums 数论+组合数学

题意很简单,求不是那么好求的,k很大 要操作很多次,所以不可能直接来的,印象中解决操作比较多无非线段树 循环节 矩阵 组合数等等吧,这道题目 也就只能多画画什么 的了 就以第一个案例为主吧 , 3 1 2 3 k我们依据画的次数来自己定好了 下面的每个数表示这个位置的 数由最初的 数组num[]中多少个数加起来得到的 当k为0的时候呢,就是 1 1 1 k为1的时候呢 1 2 3 k为2的时候呢 1 3 6 那么k为3的时候 1 4 10 这里看一下 从数组下标0开始,那么其实就是 C(i +

HDU 1695 GCD (数论-整数和素数,组合数学-容斥原理)

GCD Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor of x and y. Since the number of choices may be very large, you're only required to output t

POJ 2154 Color(组合数学-波利亚计数,数论-欧拉函数,数论-整数快速幂)

Color Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7693   Accepted: 2522 Description Beads of N colors are connected together into a circular necklace of N beads (N<=1000000000). Your job is to calculate how many different kinds of th

CodeForces 396A 数论 组合数学

题目:http://codeforces.com/contest/396/problem/A 好久没做数论的东西了,一个获取素数的预处理跟素因子分解写错了,哭瞎了,呵呵, 首先ai最大值为10^9,n为500,最坏的情况 m最大值为500个10^9相乘,肯定不能获取m了,首选每一个ai肯定是m的一个因子,然后能分解就把ai给分解素因子,这样全部的ai都分解了  就能得到m的 所有素因子 以及 所有素因子的个数,题目求的 是n个因子的 不同序列的个数,所以每次 只能选出n个因子,这n个因子由素因子

数论 - 组合数学 --- 1的个数

1的个数 Mean: 输入一个n,计算小于10^n的正整数中含有1的数的个数. analyse: 这题是一道组合数学课后思考题. 基本思路:  组合数学乘法原则 + 容斥原理 n位数中,每位可选:{0,1,2,3,4,5,6,7,8,9},所以共有10^n种,其中要除掉每位都为0的情况,所以要减一. 其中每位上不选1的情况为:{0,2,3,4,5,6,7,8,9},所以共有9^n中,同样要除掉全部为0的情况. Time complexity:O(n) Source code: //Memory

Codeforces 396A 数论,组合数学

题意:给一个a数组,求b 数组的方案数,但是要求两者乘积相同. 分析: 不可能将它们乘起来,对于每个数质因数分解,得到每个质因子个数,遍历这些质因子,将某个质因子放到 对应的盒子里面,可以不放,方案数就是一个组合数,用插板法. 这里的素数板子挺好的,一方面可以用来判断,一方面存起来. 组合数,可以考虑用乘法逆元. 每个质因子个数hash一下. #include <bits/stdc++.h> using namespace std; const int MOD = 1e9 + 7; #defi