char *s 和 char s[] 的区别小结

目前中有不少c的程序,在与项目新成员的交流中发现,普遍对于char *s1 和 char s2[] 认识有误区(认为无区别),导致有时出现“难以理解”的错误。一时也不能说得很明白,网上也搜了一下相关文章发现一些写的比较好的,综合了一下当教育资料备用。

char *s1 = "hello";
char s2[] = "hello";

【区别所在】

char *s1 的s1,而指针是指向一块内存区域,它指向的内存区域的大小可以随时改变,而且当指针指向常量字符串时,它的内容是不可以被修改的,否则在运行时会报错。
char s2[]的s2 是数组对应着一块内存区域,其地址和容量在生命期里不会改变,只有数组的内容可以改变

【内存模型】
       +-----+     +---+---+---+---+---+---+
   s1: |  *======> | h | e | l | l | o |\0 |
       +-----+     +---+---+---+---+---+---+
       +---+---+---+---+---+---+
   s2: | h | e | l | l | o |\0 |
       +---+---+---+---+---+---+

场景一)
char *s1 = "hello";
char s2[] = "hello";
s2=s1;  //编译ERROR
s1=s2;  //OK

分析:s2其地址和容量在生命期里不能改变

场景二)
char s2[] = "hello";
char *s1 = s2;  //编译器做了隐式的转换 实际为&s2

char *s1 = &s2;

分析:以上两个指针复值完全等价,由于编译器会做这个隐式转换也容易导致初学者误认为 char *s 与char s[]是一回事。
      另用第二种在一些编译器甚至会报警告信息。

场景三)
char *s1 = "hello";
char s2[] = "hello";
s1[0]=‘a‘;  //×运行ERROR( 这一句好像在一些的编译器不会出错,原因待查)
s2[0]=‘a‘;  //OK

分析:运行时会报错,原因在于企图改变s1的内容,由于s1指向的是常量字符串,其内容是不可修改的,因此在运行时不会通过。而s2指向的是变量区字符串,可以修改。

场景四)
让我们来给一个指针的指针赋值,在使用某些含char**参数的函数时会用到,场景二的增强版。
    char *s1="hello";
    char s2[]="hello";
    char *s3=s2;       //★注意这句必须要★
    char **s4=&s3;   //s2(char[])要用两步才能完成赋值
    char **s5=&s1;   //s1(char*) 只需一步
    printf("s4=[%s]\n",*s4);//打印结果:s4=[hello]
    printf("s5=[%s]\n",*s5);//打印结果:s5=[hello]

分析:这个例子应当说最能反映出char *与char []的差异,但是由于使用场合不多,新人尤其需要注意。

下面是一些char *s1 和 char s2[]相同的地方(同样编译器对char[]做了隐式变化):
1)作为形参完全相同
如:
   void function(char *s1);
   void function(char s1[]);

2)只读取不修改的时候
如:
    char *s1="hello";
    char s2[]="hello";
    printf("s1[1]=[%c]\n",s1[1]);   //s1[1]=[e] 
    printf("s2[1]=[%c]\n",s2[1]);   //s2[1]=[e] 
    printf("s1=[%s]\n",s1);         //s1=[hello]
    printf("s2=[%s]\n",s2);         //s2=[hello]

××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××

××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××

××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××

以下内容均来自互联网,系笔者汇总并总结。

1. 问题介绍

问题引入:
在实习过程中发现了一个以前一直默认的错误,同样char *c = "abc"和char c[]="abc",前者改变其内

容程序是会崩溃的,而后者完全正确。
程序演示:
测试环境Devc++
代码
#include <iostream>
using namespace std;

main()
{
   char *c1 = "abc";
   char c2[] = "abc";
   char *c3 = ( char* )malloc(3);
   c3 = "abc";
   printf("%d %d %s\n",&c1,c1,c1);
   printf("%d %d %s\n",&c2,c2,c2);
   printf("%d %d %s\n",&c3,c3,c3);
   getchar();
}   
运行结果
2293628 4199056 abc
2293624 2293624 abc
2293620 4199056 abc

参考资料:
首先要搞清楚编译程序占用的内存的分区形式:
一、预备知识—程序的内存分配
一个由c/C++编译的程序占用的内存分为以下几个部分
1、栈区(stack)—由编译器自动分配释放,存放函数的参数值,局部变量的值等。其操作方式类似于

数据结构中的栈。
2、堆区(heap)—一般由程序员分配释放,若程序员不释放,程序结束时可能由OS回收。注意它与数据

结构中的堆是两回事,分配方式倒是类似于链表,呵呵。
3、全局区(静态区)(static)—全局变量和静态变量的存储是放在一块的,初始化的全局变量和静态

变量在一块区域,未初始化的全局变量和未初始化的静态变量在相邻的另一块区域。程序结束后由系统

释放。
4、文字常量区—常量字符串就是放在这里的。程序结束后由系统释放。
5、程序代码区
这是一个前辈写的,非常详细
//main.cpp
int a=0;    //全局初始化区
char *p1;   //全局未初始化区
main()
{
   int b;栈
   char s[]="abc";   //栈
   char *p2;         //栈
   char *p3="123456";   //123456\0在常量区,p3在栈上。
   static int c=0;   //全局(静态)初始化区
   p1 = (char*)malloc(10);
   p2 = (char*)malloc(20);   //分配得来得10和20字节的区域就在堆区。
   strcpy(p1,"123456");   //123456\0放在常量区,编译器可能会将它与p3所向"123456"优化成一个

地方。
}
二、堆和栈的理论知识
2.1申请方式
stack:
由系统自动分配。例如,声明在函数中一个局部变量int b;系统自动在栈中为b开辟空间
heap:
需要程序员自己申请,并指明大小,在c中malloc函数
如p1=(char*)malloc(10);
在C++中用new运算符
如p2=(char*)malloc(10);
但是注意p1、p2本身是在栈中的。
2.2
申请后系统的响应
栈:只要栈的剩余空间大于所申请空间,系统将为程序提供内存,否则将报异常提示栈溢出。
堆:首先应该知道操作系统有一个记录空闲内存地址的链表,当系统收到程序的申请时,
会遍历该链表,寻找第一个空间大于所申请空间的堆结点,然后将该结点从空闲结点链表中删除,并将

该结点的空间分配给程序,另外,对于大多数系统,会在这块内存空间中的首地址处记录本次分配的大

小,这样,代码中的delete语句才能正确的释放本内存空间。另外,由于找到的堆结点的大小不一定正

好等于申请的大小,系统会自动的将多余的那部分重新放入空闲链表中。
2.3申请大小的限制
栈:在Windows下,栈是向低地址扩展的数据结构,是一块连续的内存的区域。这句话的意思是栈顶的地

址和栈的最大容量是系统预先规定好的,在WINDOWS下,栈的大小是2M(也有的说是1M,总之是一个编译

时就确定的常数),如果申请的空间超过栈的剩余空间时,将提示overflow。因此,能从栈获得的空间

较小。
堆:堆是向高地址扩展的数据结构,是不连续的内存区域。这是由于系统是用链表来存储的空闲内存地

址的,自然是不连续的,而链表的遍历方向是由低地址向高地址。堆的大小受限于计算机系统中有效的

虚拟内存。由此可见,堆获得的空间比较灵活,也比较大。
2.4申请效率的比较:
栈:由系统自动分配,速度较快。但程序员是无法控制的。
堆:是由new分配的内存,一般速度比较慢,而且容易产生内存碎片,不过用起来最方便.
另外,在WINDOWS下,最好的方式是用Virtual Alloc分配内存,他不是在堆,也不是在栈,而是直接在进

程的地址空间中保留一块内存,虽然用起来最不方便。但是速度快,也最灵活。
2.5堆和栈中的存储内容
栈:在函数调用时,第一个进栈的是主函数中后的下一条指令(函数调用语句的下一条可执行语句)的

地址,然后是函数的各个参数,在大多数的C编译器中,参数是由右往左入栈的,然后是函数中的局部变

量。注意静态变量是不入栈的。
当本次函数调用结束后,局部变量先出栈,然后是参数,最后栈顶指针指向最开始存的地址,也就是主

函数中的下一条指令,程序由该点继续运行。
堆:一般是在堆的头部用一个字节存放堆的大小。堆中的具体内容由程序员安排。
2.6存取效率的比较
char s1[]="aaaaaaaaaaaaaaa";
char *s2="bbbbbbbbbbbbbbbbb";
aaaaaaaaaaa是在运行时刻赋值的;
而bbbbbbbbbbb是在编译时就确定的;
但是,在以后的存取中,在栈上的数组比指针所指向的字符串(例如堆)快。
比如:
#include
voidmain()
{
char a=1;
char c[]="1234567890";
char *p="1234567890";
a = c[1];
a = p[1];
return;
}
对应的汇编代码
10:a=c[1];
004010678A4DF1movcl,byteptr[ebp-0Fh]
0040106A884DFCmovbyteptr[ebp-4],cl
11:a=p[1];
0040106D8B55ECmovedx,dwordptr[ebp-14h]
004010708A4201moval,byteptr[edx+1]
004010738845FCmovbyteptr[ebp-4],al
第一种在读取时直接就把字符串中的元素读到寄存器cl中,而第二种则要先把指针值读到edx中,在根据

edx读取字符,显然慢了。
2.7小结:
堆和栈的区别可以用如下的比喻来看出:
使用栈就象我们去饭馆里吃饭,只管点菜(发出申请)、付钱、和吃(使用),吃饱了就走,不必理会

切菜、洗菜等准备工作和洗碗、刷锅等扫尾工作,他的好处是快捷,但是自由度小。
使用堆就象是自己动手做喜欢吃的菜肴,比较麻烦,但是比较符合自己的口味,而且自由度大。

自我总结:
char *c1 = "abc";实际上先是在文字常量区分配了一块内存放"abc",然后在栈上分配一地址给c1并指向

这块地址,然后改变常量"abc"自然会崩溃

然而char c2[] = "abc",实际上abc分配内存的地方和上者并不一样,可以从
4199056
2293624 看出,完全是两块地方,推断4199056处于常量区,而2293624处于栈区

2293628
2293624
2293620 这段输出看出三个指针分配的区域为栈区,而且是从高地址到低地址

2293620 4199056 abc 看出编译器将c3优化指向常量区的"abc"

继续思考:
代码:
#include <iostream>
using namespace std;

main()
{
   char *c1 = "abc";
   char c2[] = "abc";
   char *c3 = ( char* )malloc(3);
   // *c3 = "abc" //error
   strcpy(c3,"abc");
   c3[0] = ‘g‘;
   printf("%d %d %s\n",&c1,c1,c1);
   printf("%d %d %s\n",&c2,c2,c2);
   printf("%d %d %s\n",&c3,c3,c3);
   getchar();
}   
输出:
2293628 4199056 abc
2293624 2293624 abc
2293620 4012976 gbc
写成注释那样,后面改动就会崩溃
可见strcpy(c3,"abc");abc是另一块地方分配的,而且可以改变,和上面的参考文档说法有些不一定,

而且我不能断定4012976是哪个区的,可能要通过算区的长度,希望高人继续深入解释,谢谢

2. 一个实例

[cpp] view plaincopyprint?

  1. int *ip = new int;
  2. char s[] = "abcd";
  3. char* p = "abcd";
  4. cout<<ip<<endl;
  5. cout<<*ip<<endl;
  6. cout<<&ip<<endl;
  7. //    s = p; //error C2440: ‘=‘ : cannot convert from ‘char *‘ to ‘char‘
  8. //难道s不是指向第一个字符的指针吗?
  9. cout << s <<endl;//果然这句话输出的是abcd!
  10. cout << *s <<endl;//但这句输出的是a!
  11. cout << &s <<endl;
  12. cout << (s+1) <<endl;
  13. //    cout << &(s+1) <<endl;//error C2102: ‘&‘ requires l-value
  14. cout << *(s+1) <<endl;
  15. cout << &s[1] <<endl;
  16. cout << p <<endl;
  17. cout << *p <<endl;
  18. cout << &p <<endl;
  19. cout << (p+1) <<endl;
  20. //    cout << &(p+1) <<endl;//error C2102: ‘&‘ requires l-value
  21. cout << *(p+1) <<endl;
  22. cout << &p[1] <<endl;

输出:

相关解释:

char[]是一个数组定义,char*是指针定义,你可以看下他们的区别,对你会有帮助。
1 指针和数组的区别

(1)指针和数组的分配

数组是开辟一块连续的内存空间,数组本身的标识符(也就是通常所说的数组名)代表整个数组,可以使用sizeof来获得数组所占据内存空间的大小(注意,不是数组元素的个数,而是数组占据内存空间的大小,这是以字节为单位的)。举例如下:
 
#include <stdio.h>

int main(void)
{
  char a[] = "hello";
  int b[] = {1, 2, 3, 4, 5};

printf("a: %d\n", sizeof(a));
  printf("b memory size: %d bytes\n", sizeof(b));
  printf("b elements: %d\n", sizeof(b)/sizeof(int));

return 0;
}

数组a为字符型,后面的字符串实际上占据6个字节空间(注意最后有一个\0标识字符串的结束)。从后面sizeof(b)就可以看出如何获得数组占据的内存空间,如何获得数组的元素数目。至于int数据类型分配内存空间的多少,则是编译器相关的。gcc默认为int类型分配4个字节的内存空间。
 
(2)空间的分配

这里又分为两种情况。

第一,如果是全局的和静态的
  char *p = “hello”;
  这是定义了一个指针,指向rodata section里面的“hello”,可以被编译器放到字符串池。在汇编里面的关键字为.ltorg。意思就是在字符串池里的字符串是可以共享的,这也是编译器优化的一个措施。
  char a[] = “hello”;
  这是定义了一个数组,分配在可写数据块,不会被放到字符串池。

第二,如果是局部的
  char *p = “hello”;
  这是定义了一个指针,指向rodata section里面的“hello”,可以被编译器放到字符串池。在汇编里面的关键字为.ltorg。意思就是在字符串池里的字符串是可以共享的,这也是编译器优化的一个措施。另外,在函数中可以返回它的地址,也就是说,指针是局部变量,但是它指向的内容是全局的。
  char a[] = “hello”;
  这是定义了一个数组,分配在堆栈上,初始化由编译器进行。(短的时候直接用指令填充,长的时候就从全局字符串表拷贝),不会被放到字符串池(同样如前,可能会从字符串池中拷贝过来)。注意不应该返回它的地址。

cout经研究得出以下结论:
1、对于数字指针如int *p=new int; 那么cout<<p只会输出这个指针的值,而不会输出这个指针指向的内容。
2、对于字符指针入char *p="sdf f";那么cout<<p就会输出指针指向的数据,即sdf f

============================================================================

如果还不是很理解,水木上也有高人对此进行解释:

这里的char ch[]="abc";
表示ch 是一个足以存放字符串初值和空字符‘/0‘的一维数组,可以更改数组中的字符,但是char本身是不可改变的常量。
char *pch = "abc";
那么pch 是一个指针,其初值指向一个字符串常量,之后它可以指向其他位置,但如果试图修改字符串的内容,结果将不确定。
     ______           ______      ______
ch: |abc\0 |    pch: | ◎----->  |abc\0 |
     ______           ______      ______

char chArray[100];
chArray[i] 等价于 *(chArray+i)
和指针的不同在于   chArray不是变量   无法对之赋值
另   事实上 i[chArray]  也等价于 *(chArray+i)

因此,总结如下:

1. char[] p表示p是一个数组指针,相当于const pointer,不允许对该指针进行修改。但该指针所指向的数组内容,是分配在栈上面的,是可以修改的。

2. char * pp表示pp是一个可变指针,允许对其进行修改,即可以指向其他地方,如pp = p也是可以的。对于*pp = "abc";这样的情况,由于编译器优化,一般都会将abc存放在常量区域内,然后pp指针是局部变量,存放在栈中,因此,在函数返回中,允许返回该地址(实际上指向一个常量地址,字符串常量区);而,char[] p是局部变量,当函数结束,存在栈中的数组内容均被销毁,因此返回p地址是不允许的。

同时,从上面的例子可以看出,cout确实存在一些规律:

1、对于数字指针如int *p=new int; 那么cout<<p只会输出这个指针的值,而不会输出这个指针指向的内容。
2、对于字符指针入char *p="sdf f";那么cout<<p就会输出指针指向的数据,即sdf f

那么,像&(p+1),由于p+1指向的是一个地址,不是一个指针,无法进行取址操作。

&p[1] = &p + 1,这样取到的实际上是从p+1开始的字符串内容。

分析上面的程序:

*pp = "abc";

p[] = "abc";

*pp指向的是字符串中的第一个字符。

cout << pp; // 返回pp地址开始的字符串:abc

cout << p; // 返回p地址开始的字符串:abc

cout << *p; // 返回第一个字符:a

cout << *(p+1); // 返回第二个字符:b

cout << &p[1];// 返回从第二个字符开始的字符串:bc

时间: 2024-10-19 17:05:40

char *s 和 char s[] 的区别小结的相关文章

char 与 unsigned char的本质区别

在C中,默认的基础数据类型均为signed,现在我们以char为例,说明(signed) char与unsigned char之间的区别. 首先在内存中,char与unsigned char没有什么不同,都是一个字节,唯一的区别是,char的最高位为符号位,因此char能表示-127~127,unsigned char没有符号位,因此能表示0~255,这个好理解,8个bit,最多256种情况,因此无论如何都能表示256个数字. 在实际使用过程种有什么区别呢?主要是符号位,但是在普通的赋值,读写文

const char*、char*、char* const、char[]、string的区别

1.const char* p: p is a pointer to const char(char const* p 一样)   意思就是不能通过p指针来修改p指向的内容(但是内容可以修改).2.char* p      : p is a pointer to char   意思就是可通过p指针来修改p指向的内容3.char* const p: p is a const pointer to char   意思就是p指针是一个常指针,他指向的内存地址不能变,定义的时候就得初始化   一旦给指针

C语言char s[] 和 char *s的区别

C语言char s[] 和 char *s的区别,下面这个回答讲解的很清晰. The difference here is that char *s = "Hello world"; will place Hello world in the read-only parts of the memory and making s a pointer to that, making any writing operation on this memory illegal. While do

char、signed char、unsigned char的区别

ANSI C 提供了3种字符类型,分别是char.signed char.unsigned char char相当于signed char或者unsigned char,但是这取决于编译器! 这三种字符类型都是按照1个字节存储的,可以保存256个不同的值. 不同的是取值范围signed char取值范围是 -128 到 127unsigned char 取值范围是 0 到 255 signed char的最高位为符号位,因此char能表示-128~127, unsigned char没有符号位,

SQL中char、varchar、nvarchar的区别

SQL中char.varchar.nvarchar的区别: char    char是定长的,也就是当你输入的字符小于你指定的数目时,char(8),你输入的字符小于8时,它会再后面补空值.当你输入的字符大于指定的数时,它会截取超出的字符.   nvarchar(n)    包含 n 个字符的可变长度 Unicode 字符数据.n 的值必须介于 1 与 4,000 之间.字节的存储大小是所输入字符个数的两倍.所输入的数据字符长度可以为零.       varchar[(n)]      长度为

char与unsigned char 区别

char 与 unsigned char的本质区别 http://bbs.csdn.net/topics/270080484 同一个内存内容:10010000 你用char*   解释是-112 你用unsigned   char*   解释是144 还是同样这个内存内容赋给整型值,用unsigned   char   类型还是会得到144,用char类型的就会是负数. 真正的差别还是取决于你的程序.某些情况这两种类型表示都行. 补充一下: char 可能是signed char,也可能是uns

const char* &amp;p 和 char* const &amp;p 区别

const char* &p 和 char* const &p 两种引用: 两者都是对一个对象的引用. 但是前者的"这个对象"是 const char*,一个指向 const char 的指针,注意!虽 然这个指针指向的char不可以改变,但这个指针本身的值是可以改变的,也就是说, 他可以被改变而指向另一个 const char 对象. 后者的"这个对象"则是char*, 一个指向char的指针.这个指针指向的东西是可以 改变的,但是这个指针本身是不

char* str=&quot;bbo&quot;;char s1[]=&quot;bbo&quot;的区别

;表达式运算得到的结果是常量值(不可写),常量是没有内存空间的编译的时候就会把常量放到常量区,以后不能修改 字符串是字符串常量,字符是字符常量(修改),看到的能修改的都是已经从常量区放到寄存器,在mov到变量中了所以能修改 char* str="helloworld";char s1[]="bbo"的区别 int main(int argc, char* argv[]){ int a=1; char* str="bbo"; *str='m';//

char,wchar_t,WCHAR,TCHAR,ACHAR的区别----LPCTSTR

转自http://blog.chinaunix.net/uid-7608308-id-2048125.html 简介:这是DWORD及LPCTSTR类型的了解的详细页面,介绍了和类,有关的知识,加入收藏请按键盘ctrl+D,谢谢大家的观看!要查看更多有关信息,请点击此处 首先声明,这都是在网上找的资料,我再整理修改的: 一:关于DWORD DWORD就是32bit的unsigned  long无符号长整型,DWORD是双字类型 ,4个字节,API函数中有很多参数和返回值是DWORD的. 二:如何