- Use the OpenCV function cornerEigenValsAndVecs to find the eigenvalues and eigenvectors to determine if a pixel is a corner.
- Use the OpenCV function cornerMinEigenVal to find the minimum eigenvalues for corner detection.
最小特征值对应的角点监测 ~~
对自相关矩阵 M 进行特征值分析,产生两个特征值和两个特征方向向量。因为较大的不确定度取决于较小的特征值,也就是,所以通过寻找最小特征值的最大值来寻找好的特征点
void cornerEigenValsAndVecs(InputArray src, OutputArray dst, int blockSize, int ksize, intborderType=BORDER_DEFAULT )
Parameters:
- src – Input single-channel 8-bit or floating-point image.
- dst – Image to store the results. It has the same size as src and the type CV_32FC(6) .
- blockSize – Neighborhood size (see details below).
- ksize – Aperture parameter for the Sobel() operator.
- borderType – Pixel extrapolation method. See borderInterpolate() .
For every pixel , the function cornerEigenValsAndVecs considers a blockSize blockSize neighborhood . It calculates the covariation matrix of derivatives over the neighborhood as: 导数的共生矩阵 ~~ 导数的自相关矩阵
void cornerMinEigenVal(InputArray src, OutputArray dst, int blockSize, int ksize=3, intborderType=BORDER_DEFAULT )
Parameters:
- src – Input single-channel 8-bit or floating-point image.
- dst – Image to store the minimal eigenvalues. It has the type CV_32FC1 and the same size as src .
- blockSize – Neighborhood size (see the details on cornerEigenValsAndVecs() ).
- ksize – Aperture parameter for the Sobel() operator.
- borderType – Pixel extrapolation method. See borderInterpolate() .
The function is similar to cornerEigenValsAndVecs() but it calculates and stores only the minimal eigenvalue of the covariance matrix of derivatives
Code
#include "stdafx.h" #include "opencv2/highgui/highgui.hpp" #include "opencv2/imgproc/imgproc.hpp" #include <iostream> #include <stdio.h> #include <stdlib.h> using namespace cv; using namespace std; /// Global variables Mat src, src_gray; Mat myHarris_dst; Mat myHarris_copy; Mat Mc; Mat myShiTomasi_dst; Mat myShiTomasi_copy; int myShiTomasi_qualityLevel = 50; int myHarris_qualityLevel = 50; int max_qualityLevel = 100; double myHarris_minVal; double myHarris_maxVal; double myShiTomasi_minVal; double myShiTomasi_maxVal; RNG rng(12345); const char* myHarris_window = "My Harris corner detector"; const char* myShiTomasi_window = "My Shi Tomasi corner detector"; /// Function headers void myShiTomasi_function( int, void* ); void myHarris_function( int, void* ); /** * @function main */ int main( int, char** argv ) { /// Load source image and convert it to gray src = imread( "xue.jpg", 1 ); cvtColor( src, src_gray, COLOR_BGR2GRAY ); /// Set some parameters int blockSize = 3; int apertureSize = 3; /// My Harris matrix -- Using cornerEigenValsAndVecs myHarris_dst = Mat::zeros( src_gray.size(), CV_32FC(6) ); Mc = Mat::zeros( src_gray.size(), CV_32FC1 ); cornerEigenValsAndVecs( src_gray, myHarris_dst, blockSize, apertureSize, BORDER_DEFAULT ); /* calculate Mc */ for( int j = 0; j < src_gray.rows; j++ ) { for( int i = 0; i < src_gray.cols; i++ ) { float lambda_1 = myHarris_dst.at<Vec6f>(j, i)[0]; float lambda_2 = myHarris_dst.at<Vec6f>(j, i)[1]; Mc.at<float>(j,i) = lambda_1*lambda_2 - 0.04f*pow( ( lambda_1 + lambda_2 ), 2 ); } } minMaxLoc( Mc, &myHarris_minVal, &myHarris_maxVal, 0, 0, Mat() ); /* Create Window and Trackbar */ namedWindow( myHarris_window, WINDOW_AUTOSIZE ); createTrackbar( " Quality Level:", myHarris_window, &myHarris_qualityLevel, max_qualityLevel, myHarris_function ); myHarris_function( 0, 0 ); /// My Shi-Tomasi -- Using cornerMinEigenVal myShiTomasi_dst = Mat::zeros( src_gray.size(), CV_32FC1 ); cornerMinEigenVal( src_gray, myShiTomasi_dst, blockSize, apertureSize, BORDER_DEFAULT ); minMaxLoc( myShiTomasi_dst, &myShiTomasi_minVal, &myShiTomasi_maxVal, 0, 0, Mat() ); /* Create Window and Trackbar */ namedWindow( myShiTomasi_window, WINDOW_AUTOSIZE ); createTrackbar( " Quality Level:", myShiTomasi_window, &myShiTomasi_qualityLevel, max_qualityLevel, myShiTomasi_function ); myShiTomasi_function( 0, 0 ); waitKey(0); return(0); } /** * @function myShiTomasi_function */ void myShiTomasi_function( int, void* ) { myShiTomasi_copy = src.clone(); if( myShiTomasi_qualityLevel < 1 ) { myShiTomasi_qualityLevel = 1; } for( int j = 0; j < src_gray.rows; j++ ) { for( int i = 0; i < src_gray.cols; i++ ) { if( myShiTomasi_dst.at<float>(j,i) > myShiTomasi_minVal + ( myShiTomasi_maxVal - myShiTomasi_minVal )*myShiTomasi_qualityLevel/max_qualityLevel ) { circle( myShiTomasi_copy, Point(i,j), 4, Scalar( rng.uniform(0,255), rng.uniform(0,255), rng.uniform(0,255) ), -1, 8, 0 ); } } } imshow( myShiTomasi_window, myShiTomasi_copy ); } /** * @function myHarris_function */ void myHarris_function( int, void* ) { myHarris_copy = src.clone(); if( myHarris_qualityLevel < 1 ) { myHarris_qualityLevel = 1; } for( int j = 0; j < src_gray.rows; j++ ) { for( int i = 0; i < src_gray.cols; i++ ) { if( Mc.at<float>(j,i) > myHarris_minVal + ( myHarris_maxVal - myHarris_minVal )*myHarris_qualityLevel/max_qualityLevel ) { circle( myHarris_copy, Point(i,j), 4, Scalar( rng.uniform(0,255), rng.uniform(0,255), rng.uniform(0,255) ), -1, 8, 0 ); } } } imshow( myHarris_window, myHarris_copy ); }
时间: 2024-10-27 07:25:05