PWM输入模式

一、概念理解

PWM输入捕获模式是输入捕获模式的特例,

输入捕获就是当连接到定时器的引脚上产生电平变化时对应的捕获装置会立即将当前计数值复制到另一个寄存器中。你可以开启捕获中断然后在中断处理函数中读出保存的计数值。

与输入捕获不同的是PWM输入模式会将同一个输入信号(TI1或TI2)连接到两个捕获装置(IC1和IC2)。这两个捕获装置一个捕获上升沿一个捕获下降沿。TI1FP1、TI2FP2它们中的一个被选择为触发输入且从模式控制器被配置为复位模式。

自己理解如下

1. 每个定时器有四个输入捕获通道IC1、IC2、IC3、IC4。且IC1 IC2一组,IC3 IC4一组。并且可是设置管脚和寄存器的对应关系。

2. 同一个TIx输入映射了两个ICx信号。

3. 这两个ICx信号分别在相反的极性边沿有效。

4. 两个边沿信号中的一个被选为触发信号,并且从模式控制器被设置成复位模式。

5. 当触发信号来临时,被设置成触发输入信号的捕获寄存器,捕获“一个PWM周期(即连续的两个上升沿或下降沿)”,它等于包含TIM时钟周期的个数(即捕获寄存器中捕获的为TIM的计数个数n)。

6. 同样另一个捕获通道捕获触发信号和下一个相反极性的边沿信号的计数个数m,即(即高电平的周期或低电平的周期)

7. 由此可以计算出PWM的时钟周期和占空比了

frequency=f(TIM时钟频率)/n。

duty cycle=(高电平计数个数/n),

若m为高电平计数个数,则duty cycle=m/n

若m为低电平计数个数,则duty cycle=(n-m)/n

注:因为计数器为16位,所以一个周期最多计数65535个,所以测得的 最小频率= TIM时钟频率/65535。

二配置说明

PWM输入模式是输入捕获模式的一个特例,除下列区别外,操作与输入捕获模式相同:

● 两个ICx信号被映射同一个TIx输入。

● 这2个ICx信号为边沿有效,但是极性相反。

● 其中一个TIxFP信号被作为触发输入信号,而从模式控制器被配置成复位模式。

例如,你需要测量输入到TI1上的PWM信号的长度(TIMx_CCR1寄存器)和占空比(TIMx_CCR2

寄存器),具体步骤如下(取决于CK_INT的频率和预分频器的值)

● 选择TIMx_CCR1的有效输入:置TIMx_CCMR1寄存器的CC1S=01(选择TI1)。

● 选择TI1FP1的有效极性(用来捕获数据到TIMx_CCR1中和清除计数器):置CC1P=0(上升沿

有效)。

● 选择TIMx_CCR2的有效输入:置TIMx_CCMR1寄存器的CC2S=10(选择TI1)。

● 选择TI1FP2的有效极性(捕获数据到TIMx_CCR2):置CC2P=1(下降沿有效)。

● 选择有效的触发输入信号:置TIMx_SMCR寄存器中的TS=101(选择TI1FP1)。

● 配置从模式控制器为复位模式:置TIMx_SMCR中的SMS=100

● 使能捕获:置TIMx_CCER寄存器中CC1E=1且CC2E=1。

图 PWMPWM输入模式时序

由于只有TI1FP1和TI2FP2连到了从模式控制器,所以PWM输入模式只能使用TIMx_CH1 /TIMx_CH2信号。

三程序实例解释

1. 程序概述:选择TIM3作为PWM输入捕获。IC2设置为上升沿,并设置为有效的触发输入信号。所以IC2的捕获寄存器捕获PWM周期,

IC1的捕获寄存器捕获PWM的高电平周期。

2.程序代码如下:

RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);      //时钟配置

RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7;                               //GPIO配置

PIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;

GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;

GPIO_Init(GPIOA, &GPIO_InitStructure);

NVIC_InitStructure.NVIC_IRQChannel = TIM3_IRQn;                     //NVIC配置

NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;

NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;

NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;

NVIC_Init(&NVIC_InitStructure);

TIM_ICInitStructure.TIM_Channel = TIM_Channel_2;                   //通道选择

TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Rising;       //上升沿触发

TIM_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI;    //管脚与寄存器对应关系

TIM_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1;           //输入预分频。意思是控制在多少个输入周期做一次捕获,如果

//输入的信号频率没有变,测得的周期也不会变。比如选择4分频,则每四个输入周期才做一次捕获,这样在输入信号变化不频繁的情况下,

//可以减少软件被不断中断的次数。

TIM_ICInitStructure.TIM_ICFilter = 0x0;                            //滤波设置,经历几个周期跳变认定波形稳定0x0~0xF

TIM_PWMIConfig(TIM3, &TIM_ICInitStructure);                 //根据参数配置TIM外设信息

TIM_SelectInputTrigger(TIM3, TIM_TS_TI2FP2);                //选择IC2为始终触发源

TIM_SelectSlaveMode(TIM3, TIM_SlaveMode_Reset);//TIM从模式:触发信号的上升沿重新初始化计数器和触发寄存器的更新事件

TIM_SelectMasterSlaveMode(TIM3, TIM_MasterSlaveMode_Enable); //启动定时器的被动触发

TIM_Cmd(TIM3, ENABLE);                                 //启动TIM2

TIM_ITConfig(TIM3, TIM_IT_CC2, ENABLE);     //打开中断

中断处理函数

void TIM3_IRQHandler(void)

{

TIM_ClearITPendingBit(TIM3, TIM_IT_CC2);                //清楚TIM的中断待处理位

IC2Value = TIM_GetCapture2(TIM3);                         //读取IC2捕获寄存器的值,即为PWM周期的计数值

if (IC2Value != 0)

{

DutyCycle = (TIM_GetCapture1(TIM3) * 100) / IC2Value;         //读取IC1捕获寄存器的值,并计算占空比

Frequency = 72000000 / IC2Value;                                          //计算PWM频率。

}

else

{

DutyCycle = 0;

Frequency = 0;

}

}

注(一):若想改变测量的PWM频率范围,可将TIM时钟频率做分频处理

TIM_TimeBaseStructure.TIM_Period = 0xFFFF;     //周期0~FFFF

TIM_TimeBaseStructure.TIM_Prescaler = 5;       //时钟分频,分频数为5+1即6分频

TIM_TimeBaseStructure.TIM_ClockDivision = 0;   //时钟分割

TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;//模式

TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);//基本初始化

注注(二):定时器TIM的倍频器X1或X2。在APB分频为1时,倍频值为1,否则为2。

PWM输入模式

时间: 2024-10-05 06:48:52

PWM输入模式的相关文章

STM32的PWM输入模式设置并用DMA接收数据

STM32的PWM输入模式设置并用DMA接收数据 项目中需要进行红外学习,如果采用输入捕获的方式,因为定时器只能捕获上升沿或者下降沿, 所以只能获得周期,而不能得到具体的红外波的高低电平的时间. 所以采用PWM输入的方式进行捕获. 采用的是PA8脚,对应TIM1的通道1. /********************************************************************* * 函数 *************************************

[STM32F10x] 利用定时器测量脉冲宽度

硬件:STM32F103C8T6 平台: ARM-MDk V5.11 前面一篇文章讲过如何利用定时器测量信号的频率(见[STM32F10x] 利用定时器测量频率),使用的是定时器的捕获/比较单元(Capture/compare),它也可以测量输入信号的脉冲宽度. 利用定时器测量脉冲宽度有两种方法. 方法1: 在捕获中断函数里改变捕获信号的触发沿(上升沿触发改为下降沿触发,或者下降沿触发改为上升沿触发),通过两次触发得到的计数器的差值,来计算出脉冲宽度.这种 方法需要定时器的配置和[STM32F1

Stm32高级定时器(二)

Stm32高级定时器(二) 1 主从模式:主?从? 谈论主从,可知至少有两个以上的触发或者驱动信号,stm32内部有多个定时器,可以相互之间驱动或者控制. 主模式:定时器使能只受驱动时钟控制或者输出控制信号(TRGO). 从模式:复位模式, 在发生一个触发输入事件时,计数器和它的预分频器能够重新被初始化:同时,如果IMx_CR1寄存器的URS 位为低,还产生一个更新事件UEV :然后所有的预装载寄存器(TIMx_ARR ,TIMx_CCRx)都被更新了. 从模式:门控模式, 计数器的使能依赖于选

[stm32] STM32的通用定时器TIMx系统了解

通用定时器(TIMx) 一.TIMx简介 二.TIMx主要功能 三.TIMx功能描述 3.1 时基单元 3.2 计数器模式 3.3 时钟选择 3.4 捕获/比较通道 3.5 输入捕获模式 3.6 PWM输入模式 3.7 强置输出模式 3.8 输出比较模式 3.9 PWM 模式 3.10 单脉冲模式 四.简单例子理解TIMx 4.1 使得PB5-TIM3通道2产生频率为12.5Hz的方波,该方波控制LED1的闪烁 4.2 周期控制通用定时器3的2通道,实现1KHz的不同占空比波形,控制LED实现呼

STM32 通用定时器的几种配置方式

STM32 通用定时器的几种配置方式 //------------------------------------------------------------------------------ // 1.普通定时使用 #include"stm32f10x.h" #include"time.h" static Time_NVIC_Config( void ) { NVIC_InitTypeDef NVIC_InitStructure; NVIC_SetVecto

TIM定时器的应用

TIM定时器的应用   ①输入捕获的应用: 上一节,我已阐述TIM的输入捕获具体作用有两个(如下图):     对输入信号的测量:                                     测量信号周期或频率:              1)value1     当捕获通道 TIx上出现上升沿时,发生第一次捕获,计数器 CNT 的值会被锁存到捕获寄存器 CCR 中,而且还会进入捕获中断,在中断服务程序中记录一次捕获(可以用一个标志变量来记录),并把捕获寄存器中的值读取到 value

[pwm]PWM的输入捕捉模式

对于stm32来说,输入捕捉模式有两种: 普通输入捕捉模式:经常用来测量脉冲宽度和频率,例如测量脉冲宽度,TIM5_CH1来捕获高电平脉宽,首先先设置输入捕获为上升沿触发,然后记录下发生上升沿时TIM5_CNT值.再然后,设置捕获信号为下降沿,在下降沿到来的时候,记录下此时的TIM5_CNT值.这样一来,两次TIM5_CNT值只差即为脉冲宽度.只设置上升沿触发则可以捕获信号周期. PWM输入捕捉模式:pwm输入捕获模式是普通输入模式一种特殊应用,是将TIMx输入映射了两个ICx信号(输入捕获装置

【STM32H7教程】第37章 STM32H7的LPTIM低功耗定时器应用之PWM

完整教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=86980 第37章       STM32H7的LPTIM低功耗定时器应用之PWM 本章教程为大家讲解低功耗定时器的PWM输出.使用LPTIM的好处是系统处于睡眠.停机状态依然可以正常工作(除了待机模式).实际项目中对于功耗有要求的场合,可以使用这种方式,可以一定程度上较低功耗. 37.1 初学者重要提示 37.2 低功耗定时器PWM驱动设计 37.3 低功耗定时器板级支持包(

基于tiny4412的Linux内核移植 -- PWM子系统学习(八)

作者信息 作者: 彭东林 邮箱:[email protected] QQ:405728433 平台简介 开发板:tiny4412ADK + S700 + 4GB Flash 要移植的内核版本:Linux-4.4.0 (支持device tree) u-boot版本:友善之臂自带的 U-Boot 2010.12 (为支持uImage启动,做了少许改动) busybox版本:busybox 1.25 交叉编译工具链: arm-none-linux-gnueabi-gcc (gcc version 4