红黑树和AVL树的比较

1. 红黑树并不追求“完全平衡”——它只要求部分地达到平衡要求,降低了对旋转的要求,从而提高了性能。

红黑树能够以O(log2 n) 的时间复杂度进行搜索、插入、删除操作。此外,由于它的设计,任何不平衡都会在三次旋转之内解决。当然,还有一些更好的,但实现起来更复杂的数据结构,能够做到一步旋转之内达到平衡,但红黑树能够给我们一个比较“便宜”的解决方案。红黑树的算法时间复杂度和AVL相同,但统计性能比AVL树更高。

当然,红黑树并不适应所有应用树的领域。如果数据基本上是静态的,那么让他们待在他们能够插入,并且不影响平衡的地方会具有更好的性能。如果数据完全是静态的,做一个哈希表,性能可能会更好一些。

红黑树是一个更高效的检索二叉树,因此常常用来实现关联数组。典型地,JDK 提供的集合类 TreeMap 本身就是一个红黑树的实现。

IBM DevelopWorks 上一篇文章讲解非常好,供参考。

http://www.ibm.com/developerworks/cn/java/j-lo-tree/index.html?ca=drs-

TreeMap 和 TreeSet 是 Java Collection Framework 的两个重要成员,其中 TreeMap 是 Map 接口的常用实现类,而 TreeSet 是 Set 接口的常用实现类。虽然 HashMap 和 HashSet 实现的接口规范不同,但 TreeSet 底层是通过 TreeMap 来实现的,因此二者的实现方式完全一样。而 TreeMap 的实现就是红黑树算法。

对于 TreeMap 而言,由于它底层采用一棵“红黑树”来保存集合中的 Entry,这意味这 TreeMap 添加元素、取出元素的性能都比 HashMap 低:当 TreeMap 添加元素时,需要通过循环找到新增 Entry 的插入位置,因此比较耗性能;当从 TreeMap 中取出元素时,需要通过循环才能找到合适的 Entry,也比较耗性能。

但 TreeMap、TreeSet 比 HashMap、HashSet 的优势在于:TreeMap 中的所有 Entry 总是按 key 根据指定排序规则保持有序状态,TreeSet 中所有元素总是根据指定排序规则保持有序状态。

2 AVL树是最先发明的自平衡二叉查找树。在AVL树中任何节点的两个儿子子树的高度最大差别为一,所以它也被称为高度平衡树。查找、插入和删除在平均和最坏情况下都是O(log n)。增加和删除可能需要通过一次或多次树旋转来重新平衡这个树。

引入二叉树的目的是为了提高二叉树的搜索的效率,减少树的平均搜索长度.为此,就必须每向二叉树插入一个结点时调整树的结构,使得二叉树搜索保持平衡,从而可能降低树的高度,减少的平均树的搜索长度.

AVL树的定义:

一棵AVL树满足以下的条件:

1>它的左子树和右子树都是AVL树

2>左子树和右子树的高度差不能超过1

性质:

1>一棵n个结点的AVL树的其高度保持在0(log2(n)),不会超过3/2log2(n+1)

2>一棵n个结点的AVL树的平均搜索长度保持在0(log2(n)).

3>一棵n个结点的AVL树删除一个结点做平衡化旋转所需要的时间为0(log2(n)).

为了保证平衡,AVL树中的每个结点都有一个平衡因子(balance factor,以下用BF表示),它表示这个结点的左、右子树的高度差,也就是左子树的高度减去右子树的高度的结果值。AVL树上所有结点的BF值只能是-1、0、1。反之,只要二叉树上一个结点的BF的绝对值大于1,则该二叉树就不是平衡二叉树。下图演示了平衡二叉树和非平衡二叉树。

从1这点来看红黑树是牺牲了严格的高度平衡的优越条件为代价红黑树能够以O(log2 n)的时间复杂度进行搜索、插入、删除操作。此外,由于它的设计,任何不平衡都会在三次旋转之内解决。当然,还有一些更好的,但实现起来更复杂的数据结构能够做到一步旋转之内达到平衡,但红黑树能够给我们一个比较“便宜”的解决方案。红黑树的算法时间复杂度和AVL相同,但统计性能比AVL树更高.

红黑树和AVL树的比较

时间: 2024-12-15 20:10:36

红黑树和AVL树的比较的相关文章

Linux内核之于红黑树and AVL树

为什么Linux早先使用AVL树而后来倾向于红黑树?       实际上这是由红黑树的实用主义特质导致的结果,本短文依然是形而上的观点.红黑树可以直接由2-3树导出,我们可以不再提红黑树,而只提2-3树,因为 2-3树的操作太简单.另外,任何红黑树的操作和特性都可以映射到2-3树中.因此红黑树和AVL树的比较就成了2-3树和AVL树的比较. 它们俩的区别在哪?2-3树的平衡是完美平衡的,但是树杈数量却可以是3个,而AVL树差一点点就完美平衡的标准二叉树,它只允许子树的高度差最多为1. 可见这么看

红黑树和AVL树的实现与比较-----算法导论

一.问题描述 实现3种树中的两种:红黑树,AVL树,Treap树 二.算法原理 (1)红黑树 红黑树是一种二叉查找树,但在每个结点上增加一个存储位表示结点的颜色,可以是red或black.红黑树满足以下五个性质: 1) 每个结点或是红色或是黑色 2) 根结点是黑色 3) 每个叶结点是黑的 4)如果一个结点是红的,则它的两个儿子均是黑色 5) 每个结点到其子孙结点的所有路径上包含相同数目的黑色结点 本实验主要实现红黑树的初始化,插入和删除操作.当对红黑树进行插入和 删除操作时,可能会破坏红黑树的五

B树、B+树、红黑树、AVL树

定义及概念 B树 二叉树的深度较大,在查找时会造成I/O读写频繁,查询效率低下,所以引入了多叉树的结构,也就是B树.阶为M的B树具有以下性质: 1.根节点在不为叶子节点的情况下儿子数为 2 ~ M2.除根结点以外的非叶子结点的儿子数为 M/2(向上取整) ~ M3.拥有 K 个孩子的非叶子节点包含 k-1 个keys(关键字),且递增排列4.所有叶子结点在同一层,即深度相同 (叶节点可以看成是一种外部节点,不包含任何关键字信息) 在B-树中,每个结点中关键字从小到大排列,并且当该结点的孩子是非叶

【算法导论学习-26】 二叉树专题4:红黑树、AVL树、B-Tree

1.   红黑树(Red-Black Trees) 参考<算法导论>P308页,红黑树是一种对树的高度要求最灵活的准平衡二叉搜索树.五大属性: 1: Every node is either RED or BLACK. 2: The root is black. 3: Every leaf(NIL) is black.  (The NIL is the sentinel.) 4: If a node is RED, then both its children areblack. 5: For

红黑树与AVL树

概述:本文从排序二叉树作为引子,讲解了红黑树,最后把红黑树和AVL树做了一个比较全面的对比. 1 排序二叉树 排序二叉树是一种特殊结构的二叉树,可以非常方便地对树中所有节点进行排序和检索. 排序二叉树要么是一棵空二叉树,要么是具有下列性质的二叉树: ? 若它的左子树不空,则左子树上所有节点的值均小于它的根节点的值: ? 若它的右子树不空,则右子树上所有节点的值均大于它的根节点的值: ? 它的左.右子树也分别为排序二叉树. 下图显示了一棵排序二叉树: 对排序二叉树,若按中序遍历就可以得到由小到大的

红黑树和AVL树的区别(转)

add by zhj: AVL树和红黑树都是平衡二叉树,虽然AVL树是最早发明的平衡二叉树,但直接把平衡二叉树等价于AVL树,我认为非常不合适. 但很多地方都在这么用.两者的比较如下 平衡二叉树类型 平衡度 调整频率 适用场景 AVL树 高 高 查询多,增/删少 红黑树 低 低 增/删频繁 原文:https://blog.csdn.net/u010899985/article/details/80981053 一,AVL树 (1)简介 一般用平衡因子判断是否平衡并通过旋转来实现平衡,左右子树树高

B树、B+树、红黑树、AVL树比较

B树是为了提高磁盘或外部存储设备查找效率而产生的一种多路平衡查找树. B+树为B树的变形结构,用于大多数数据库或文件系统的存储而设计. B树相对于红黑树的区别 在大规模数据存储的时候,红黑树往往出现由于树的深度过大而造成磁盘IO读写过于频繁,进而导致效率低下的情况.为什么会出现这样的情况,我们知道要获取磁盘上数据,必须先通过磁盘移动臂移动到数据所在的柱面,然后找到指定盘面,接着旋转盘面找到数据所在的磁道,最后对数据进行读写.磁盘IO代价主要花费在查找所需的柱面上,树的深度过大会造成磁盘IO频繁读

红黑树、B(+)树、跳表、AVL等数据结构,应用场景及分析,以及一些英文缩写

在网上学习了一些材料. 这一篇:https://www.zhihu.com/question/30527705 AVL树:最早的平衡二叉树之一.应用相对其他数据结构比较少.windows对进程地址空间的管理用到了AVL树 红黑树:平衡二叉树,广泛用在C++的STL中.map和set都是用红黑树实现的.我们熟悉的STL的map容器底层是RBtree,当然指的不是unordered_map,后者是hash. B/B+树用在磁盘文件组织 数据索引和数据库索引 Trie树 字典树,用在统计和排序大量字符

AVL树、红黑树以及B树介绍

简介 首先,说一下在数据结构中为什么要引入树这种结构,在我们上篇文章中介绍的数组与链表中,可以发现,数组适合查询这种静态操作(O(1)),不合适删除与插入这种动态操作(O(n)),而链表则是适合删除与插入,而查询效率则就比较慢了,本文要分享学习的树就是为了平衡这种静态操作与动态操作的差距. 一.二叉查找树 简介 满足下面条件就是二叉查找树 任意节点左子树不为空,则左子树的值均小于根节点的值. 任意节点右子树不为空,则右子树的值均大于于根节点的值. 任意节点的左右子树也分别是二叉查找树. 没有键值