accept与epoll惊群 转载

今天打开 OneNote,发现里面躺着一篇很久以前写的笔记,现在将它贴出来。

1. 什么叫惊群现象

首先,我们看看维基百科对惊群的定义:

The thundering herd problem occurs when a large number of processes waiting for an event are awoken when that event occurs, but only one process is able to proceed at a time. After the processes wake up, they all demand the resource and a decision must be made as to which process can continue. After the decision is made, the remaining processes are put back to sleep, only to all wake up again to request access to the resource.

This occurs repeatedly, until there are no more processes to be woken up. Because all the processes use system resources upon waking, it is more efficient if only one process was woken up at a time.

This may render the computer unusable, but it can also be used as a technique if there is no other way to decide which process should continue (for example when programming with semaphores).

简而言之,惊群现象(thundering herd)就是当多个进程和线程在同时阻塞等待同一个事件时,如果这个事件发生,会唤醒所有的进程,但最终只可能有一个进程/线程对该事件进行处理,其他进程/线程会在失败后重新休眠,这种性能浪费就是惊群。

2. accept 惊群

考虑如下场景:
主进程创建socket, bind, listen之后,fork出多个子进程,每个子进程都开始循环处理(accept)这个socket。每个进程都阻塞在accpet上,当一个新的连接到来时,所有的进程都会被唤醒,但其中只有一个进程会accept成功,其余皆失败,重新休眠。这就是accept惊群。

那么这个问题真的存在吗?

事实上,历史上,Linux 的 accpet 确实存在惊群问题,但现在的内核都解决该问题了。即,当多个进程/线程都阻塞在对同一个 socket 的 accept 调用上时,当有一个新的连接到来,内核只会唤醒一个进程,其他进程保持休眠,压根就不会被唤醒。

测试代码如下:

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <sys/wait.h>
#include <stdio.h>
#include <string.h>
#define PROCESS_NUM 10
int main()
{
    int fd = socket(PF_INET, SOCK_STREAM, 0);
    int connfd;
    int pid;
    char sendbuff[1024];
    struct sockaddr_in serveraddr;
    serveraddr.sin_family = AF_INET;
    serveraddr.sin_addr.s_addr = htonl(INADDR_ANY);
    serveraddr.sin_port = htons(1234);
    bind(fd, (struct sockaddr*)&serveraddr, sizeof(serveraddr));
    listen(fd, 1024);
    int i;
    for(i = 0; i < PROCESS_NUM; i++)
    {
        int pid = fork();
        if(pid == 0)
        {
            while(1)
            {
                connfd = accept(fd, (struct sockaddr*)NULL, NULL);
                snprintf(sendbuff, sizeof(sendbuff), "accept PID is %d\n", getpid());

                send(connfd, sendbuff, strlen(sendbuff) + 1, 0);
                printf("process %d accept success!\n", getpid());
                close(connfd);
            }
        }
    }
    int status;
    wait(&status);
    return 0;
}

当我们对该服务器发起连接请求(用 telnet/curl 等模拟)时,会看到只有一个进程被唤醒。

关于 accept 惊群的一些帖子或文章:

3. epoll惊群

如上所述,accept 已经不存在惊群问题,但 epoll 上还是存在惊群问题。即,如果多个进程/线程阻塞在监听同一个 listening socket fd 的 epoll_wait 上,当有一个新的连接到来时,所有的进程都会被唤醒。

考虑如下场景:

主进程创建 socket, bind, listen 后,将该 socket 加入到 epoll 中,然后 fork 出多个子进程,每个进程都阻塞在 epoll_wait 上,如果有事件到来,则判断该事件是否是该 socket 上的事件,如果是,说明有新的连接到来了,则进行 accept 操作。为了简化处理,忽略后续的读写以及对 accept 返回的新的套接字的处理,直接断开连接。

那么,当新的连接到来时,是否每个阻塞在 epoll_wait 上的进程都会被唤醒呢?

很多博客中提到,测试表明虽然 epoll_wait 不会像 accept 那样只唤醒一个进程/线程,但也不会把所有的进程/线程都唤醒。例如这篇文章:关于多进程 epoll 与 “惊群”问题

为了验证这个问题,我自己写了一个测试程序:

#include <sys/types.h>
#include <sys/socket.h>
#include <sys/epoll.h>
#include <netdb.h>
#include <string.h>
#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/wait.h>
#define PROCESS_NUM 10
static int
create_and_bind (char *port)
{
    int fd = socket(PF_INET, SOCK_STREAM, 0);
    struct sockaddr_in serveraddr;
    serveraddr.sin_family = AF_INET;
    serveraddr.sin_addr.s_addr = htonl(INADDR_ANY);
    serveraddr.sin_port = htons(atoi(port));
    bind(fd, (struct sockaddr*)&serveraddr, sizeof(serveraddr));
    return fd;
}
    static int
make_socket_non_blocking (int sfd)
{
    int flags, s;

    flags = fcntl (sfd, F_GETFL, 0);
    if (flags == -1)
    {
        perror ("fcntl");
        return -1;
    }

    flags |= O_NONBLOCK;
    s = fcntl (sfd, F_SETFL, flags);
    if (s == -1)
    {
        perror ("fcntl");
        return -1;
    }

    return 0;
}

#define MAXEVENTS 64

int
main (int argc, char *argv[])
{
    int sfd, s;
    int efd;
    struct epoll_event event;
    struct epoll_event *events;

    sfd = create_and_bind("1234");
    if (sfd == -1)
        abort ();

    s = make_socket_non_blocking (sfd);
    if (s == -1)
        abort ();

    s = listen(sfd, SOMAXCONN);
    if (s == -1)
    {
        perror ("listen");
        abort ();
    }

    efd = epoll_create(MAXEVENTS);
    if (efd == -1)
    {
        perror("epoll_create");
        abort();
    }

    event.data.fd = sfd;
    //event.events = EPOLLIN | EPOLLET;
    event.events = EPOLLIN;
    s = epoll_ctl(efd, EPOLL_CTL_ADD, sfd, &event);
    if (s == -1)
    {
        perror("epoll_ctl");
        abort();
    }

    /* Buffer where events are returned */
    events = calloc(MAXEVENTS, sizeof event);
            int k;
    for(k = 0; k < PROCESS_NUM; k++)
    {
        int pid = fork();
        if(pid == 0)
        {

            /* The event loop */
            while (1)
            {
                int n, i;
                n = epoll_wait(efd, events, MAXEVENTS, -1);
                printf("process %d return from epoll_wait!\n", getpid());
                                       /* sleep here is very important!*/
                //sleep(2);
                                       for (i = 0; i < n; i++)
                {
                    if ((events[i].events & EPOLLERR) || (events[i].events & EPOLLHUP) || (!(events[i].events &                                    EPOLLIN)))
                    {
                        /* An error has occured on this fd, or the socket is not
                        ready for reading (why were we notified then?) */
                        fprintf (stderr, "epoll error\n");
                        close (events[i].data.fd);
                        continue;
                    }
                    else if (sfd == events[i].data.fd)
                    {
                        /* We have a notification on the listening socket, which
                        means one or more incoming connections. */
                        struct sockaddr in_addr;
                        socklen_t in_len;
                        int infd;
                        char hbuf[NI_MAXHOST], sbuf[NI_MAXSERV];

                        in_len = sizeof in_addr;
                        infd = accept(sfd, &in_addr, &in_len);
                        if (infd == -1)
                        {
                            printf("process %d accept failed!\n", getpid());
                            break;
                        }
                        printf("process %d accept successed!\n", getpid());

                        /* Make the incoming socket non-blocking and add it to the
                        list of fds to monitor. */
                        close(infd);
                    }
                }
            }
        }
    }
    int status;
    wait(&status);
    free (events);
    close (sfd);
    return EXIT_SUCCESS;
}

发现确实如上面那篇博客里所说,当我模拟发起一个请求时,只有一个或少数几个进程被唤醒了。

也就是说,到目前为止,还没有得到一个确定的答案。但后来,在下面这篇博客中看到这样一个评论:http://blog.csdn.net/spch2008/article/details/18301357

这个总结,需要进一步阐述,你的实验,看上去是只有4个进程唤醒了,而事实上,其余进程没有被唤醒的原因是你的某个进程已经处理完这个 accept,内核队列上已经没有这个事件,无需唤醒其他进程。你可以在 epoll 获知这个 accept 事件的时候,不要立即去处理,而是 sleep 下,这样所有的进程都会被唤起

看到这个评论后,我顿时如醍醐灌顶,重新修改了上面的测试程序,即在 epoll_wait 返回后,加了个 sleep 语句,这时再测试,果然发现所有的进程都被唤醒了。

所以,epoll_wait上的惊群确实是存在的。

4. 为什么内核不处理 epoll 惊群

看到这里,我们可能有疑惑了,为什么内核对 accept 的惊群做了处理,而现在仍然存在 epoll 的惊群现象呢?

我想,应该是这样的:
accept 确实应该只能被一个进程调用成功,内核很清楚这一点。但 epoll 不一样,他监听的文件描述符,除了可能后续被 accept 调用外,还有可能是其他网络 IO 事件的,而其他 IO 事件是否只能由一个进程处理,是不一定的,内核不能保证这一点,这是一个由用户决定的事情,例如可能一个文件会由多个进程来读写。所以,对 epoll 的惊群,内核则不予处理。

5. Nginx 是如何处理惊群问题的

在思考这个问题之前,我们应该以前对前面所讲几点有所了解,即先弄清楚问题的背景,并能自己复现出来,而不仅仅只是看书或博客,然后再来看看 Nginx 的解决之道。这个顺序不应该颠倒。

首先,我们先大概梳理一下 Nginx 的网络架构,几个关键步骤为:

  1. Nginx 主进程解析配置文件,根据 listen 指令,将监听套接字初始化到全局变量 ngx_cycle 的 listening 数组之中。此时,监听套接字的创建、绑定工作早已完成。
  2. Nginx 主进程 fork 出多个子进程。
  3. 每个子进程在 ngx_worker_process_init 方法里依次调用各个 Nginx 模块的 init_process 钩子,其中当然也包括 NGX_EVENT_MODULE 类型的 ngx_event_core_module 模块,其 init_process 钩子为 ngx_event_process_init。
  4. ngx_event_process_init 函数会初始化 Nginx 内部的连接池,并把 ngx_cycle 里的监听套接字数组通过连接池来获得相应的表示连接的 ngx_connection_t 数据结构,这里关于 Nginx 的连接池先略过。我们主要看 ngx_event_process_init 函数所做的另一个工作:如果在配置文件里没有开启accept_mutex锁,就通过 ngx_add_event 将所有的监听套接字添加到 epoll 中。
  5. 每一个 Nginx 子进程在执行完 ngx_worker_process_init 后,会在一个死循环中执行 ngx_process_events_and_timers,这就进入到事件处理的核心逻辑了。
  6. 在 ngx_process_events_and_timers 中,如果在配置文件里开启了 accept_mutext 锁,子进程就会去获取 accet_mutext 锁。如果获取成功,则通过 ngx_enable_accept_events 将监听套接字添加到 epoll 中,否则,不会将监听套接字添加到 epoll 中,甚至有可能会调用 ngx_disable_accept_events 将监听套接字从 epoll 中删除(如果在之前的连接中,本worker子进程已经获得过accept_mutex锁)。
  7. ngx_process_events_and_timers 继续调用 ngx_process_events,在这个函数里面阻塞调用 epoll_wait。

至此,关于 Nginx 如何处理 fork 后的监听套接字,我们已经差不多理清楚了,当然还有一些细节略过了,比如在每个 Nginx 在获取 accept_mutex 锁前,还会根据当前负载来判断是否参与 accept_mutex 锁的争夺。

把这个过程理清了之后,Nginx 解决惊群问题的方法也就出来了,就是利用 accept_mutex 这把锁。

如果配置文件中没有开启 accept_mutex,则所有的监听套接字不管三七二十一,都加入到每子个进程的 epoll中,这样当一个新的连接来到时,所有的 worker 子进程都会惊醒。

如果配置文件中开启了 accept_mutex,则只有一个子进程会将监听套接字添加到 epoll 中,这样当一个新的连接来到时,当然就只有一个 worker 子进程会被唤醒了。

6. 小结

现在我们对惊群及 Nginx 的处理总结如下:

  • accept 不会有惊群,epoll_wait 才会。
  • Nginx 的 accept_mutex,并不是解决 accept 惊群问题,而是解决 epoll_wait 惊群问题。
  • 说Nginx 解决了 epoll_wait 惊群问题,也是不对的,它只是控制是否将监听套接字加入到epoll 中。监听套接字只在一个子进程的 epoll 中,当新的连接来到时,其他子进程当然不会惊醒了。

7. 其他参考文章

时间: 2024-08-09 07:39:53

accept与epoll惊群 转载的相关文章

epoll惊群问题-解决思路

[遇到问题] 手头原来有一个单进程的linux epoll服务器程序,近来希望将它改写成多进程版本,主要原因有: 在服务高峰期间 并发的 网络请求非常海量,目前的单进程版本的程序有点吃不消:单进程时只有一个循环先后处理epoll_wait()到的事件,使得某些不幸排队靠后的socket fd的网络事件处理不及时(担心有些socket客户端等不耐烦而超时断开): 希望充分利用到服务器的多颗CPU: 但随着改写工作的深入,便第一次碰到了“惊群”问题,一开始我的程序设想如下: 主进程先监听端口, li

epoll惊群原因分析

考虑如下情况(实际一般不会做,这里只是举个例子): 在主线程中创建一个socket.绑定到本地端口并监听 在主线程中创建一个epoll实例(epoll_create(2)) 将监听socket添加到epoll中(epoll_ctl(2)) 创建多个子线程,每个子线程都共享步骤2里创建的同一个epoll文件描述符,然后调用epoll_wait(2)等待事件到来accept(2) 请求到来,新连接建立 这里的问题就是,在第5步的时候,会有多少个线程被唤醒而从epoll_wait()调用返回?答案是不

【转载】“惊群”,看看nginx是怎么解决它的

原文:http://blog.csdn.net/russell_tao/article/details/7204260 在说nginx前,先来看看什么是“惊群”?简单说来,多线程/多进程(linux下线程进程也没多大区别)等待同一个socket事件,当这个事件发生时,这些线程/进程被同时唤醒,就是惊群.可以想见,效率很低下,许多进程被内核重新调度唤醒,同时去响应这一个事件,当然只有一个进程能处理事件成功,其他的进程在处理该事件失败后重新休眠(也有其他选择).这种性能浪费现象就是惊群. 惊群通常发

“惊群”,看看nginx是怎么解决它的

在说nginx前,先来看看什么是“惊群”?简单说来,多线程/多进程(linux下线程进程也没多大区别)等待同一个socket事件,当这个事件发生时,这些线程/进程被同时唤醒,就是惊群.可以想见,效率很低下,许多进程被内核重新调度唤醒,同时去响应这一个事件,当然只有一个进程能处理事件成功,其他的进程在处理该事件失败后重新休眠(也有其他选择).这种性能浪费现象就是惊群. 惊群通常发生在server 上,当父进程绑定一个端口监听socket,然后fork出多个子进程,子进程们开始循环处理(比如acce

linux 惊群问题

1. 结论 对于惊群的资料,网上特别多,良莠不齐,也不全面.看的时候,有的资料说,惊群已经解决了,有的资料说,惊群还没解决.. 哪个才是对的?!  一怒之下,在研究各种公开资料的基础上,特意查对了linux源码,总结了此文.希望对有需要的人略有帮助,希望各位大神轻拍,如有错漏,不吝指教,感激不尽.([email protected]) 先说结论吧: 1. Linux多进程accept系统调用的惊群问题(注意,这里没有使用select.epoll等事件机制),在linux 2.6版本之前的版本存在

Linux网络编程“惊群”问题总结

1.前言 我从事Linux系统下网络开发将近4年了,经常还是遇到一些问题,只是知其然而不知其所以然,有时候和其他人交流,搞得非常尴尬.如今计算机都是多核了,网络编程框架也逐步丰富多了,我所知道的有多进程.多线程.异步事件驱动常用的三种模型.最经典的模型就是Nginx中所用的Master-Worker多进程异步驱动模型.今天和大家一起讨论一下网络开发中遇到的“惊群”现象.之前只是听说过这个现象,网上查资料也了解了基本概念,在实际的工作中还真没有遇到过.今天周末,结合自己的理解和网上的资料,彻底将“

linux惊群

基本概念:子进程继承父进程环境和上下文的大部分内容的拷贝,其中就包括文件描述符表. 父进程fork出来的子进程,复制父进程的文件描述符.这些文件描述符fd是独立的,但是文件描述符指向的系统文件表项是唯一的,即是 struct file本身唯一. 同理,fork得到的子进程和父进程共享同一个socket(套接字代表文件).fd与文件关联,通过绑定struct sockaddr套接字地址空间,跟特定的ip和端口绑定在一起. 所以在子进程中accept(listen,....),虽然listen在不同

Projects: Linux scalability: Accept() scalability on Linux 惊群效应

小结: 1.不必要的唤醒 惊群效应 https://github.com/benoitc/gunicorn/issues/792#issuecomment-46718939 https://www.citi.umich.edu/u/cel/linux-scalability/reports/accept.html http://stackoverflow.com/questions/12494914/how-does-the-operating-system-load-balance-betwe

Redis 利用锁机制来防止缓存过期产生的惊群现象-转载自 http://my.oschina.net/u/1156660/blog/360552

首先,所谓的缓存过期引起的“惊群”现象是指,在大并发情况下,我们通常会用缓存来给数据库分压,但是会有这么一种情况发生,那就是在一定时间 内生成大量的缓存,然后当缓存到期之后又有大量的缓存失效,导致后端数据库的压力突然增大,这种现象就可以称为“缓存过期产生的惊群现象”! 以下代码的思路,就是利用“锁机制”来防止惊群现象.先看代码: class KomaRedis{ private $redis; //redis对象 private static $_instance = null; private