scikit-learn(工程中用的相对较多的模型介绍):1.12. Multiclass and multilabel algorithms

http://scikit-learn.org/stable/modules/multiclass.html

在实际项目中,我们真的很少用到那些简单的模型,比如LR、kNN、NB等,虽然经典,但在工程中确实不实用。

今天我们关注在工程中用的相对较多的 Multiclass and multilabel algorithms。

warning:scikit-learn的所有分类器都是可以do multiclass classification out-of-the-box(可直接使用),所以没必要使用本节介绍的
sklearn.multiclass module,这里只是讲些知识点。

Below is a summary of the classifiers supported by scikit-learn grouped by strategy; you don’t need the meta-estimators in this class if you’re using one of these unless you want custom multiclass behavior:

Some estimators also support multioutput-multiclass classification tasks Decision
Trees
Random ForestsNearest
Neighbors
.

三类问题:

Multiclass classification means
a classification task with more than two classes;但是一个sample只能属于其中一个类别(相当于一个多元分类)。

Multilabel
classification
 assigns to each sample a set of target labels.一个sample可以属于多个类别(相当于多个二元分类)。

Multioutput-multiclass
classification
 and multi-task
classification
 means that a single estimator has to handle several joint classification tasks.(相当于多个多元分类:The
set of labels can be different for each output variable. For instance a sample could be assigned “pear” for an output variable that takes possible values in a finite set of species such as “pear”, “apple”, “orange” and “green” for a second output variable
that takes possible values in a finite set of colors such as “green”, “red”, “orange”, “yellow”...)。

版权声明:本文为博主原创文章,未经博主允许不得转载。

时间: 2024-10-02 10:59:13

scikit-learn(工程中用的相对较多的模型介绍):1.12. Multiclass and multilabel algorithms的相关文章

scikit-learn(工程中用的相对较多的模型介绍):1.4. Support Vector Machines

参考:http://scikit-learn.org/stable/modules/svm.html 在实际项目中,我们真的很少用到那些简单的模型,比如LR.kNN.NB等,虽然经典,但在工程中确实不实用. 今天我们关注在工程中用的相对较多的SVM. SVM功能不少:Support vector machines (SVMs) are a set of supervised learning methods used for classification, regression and outl

scikit-learn(工程中用的相对较多的模型介绍):1.13. Feature selection

参考:http://scikit-learn.org/stable/modules/feature_selection.html The classes in the sklearn.feature_selection module can be used for feature selection/dimensionality reduction on sample sets, either to improve estimators' accuracy scores or to boost

scikit-learn(工程中用的相对较多的模型介绍):1.14. Semi-Supervised

参考:http://scikit-learn.org/stable/modules/label_propagation.html The semi-supervised estimators insklearn.semi_supervised are able to make use of this additional unlabeled data to better capture the shape of the underlying data distribution and gener

Query意图分析:记一次完整的机器学习过程(scikit learn library学习笔记)

所谓学习问题,是指观察由n个样本组成的集合,并根据这些数据来预测未知数据的性质. 学习任务(一个二分类问题): 区分一个普通的互联网检索Query是否具有某个垂直领域的意图.假设现在有一个O2O领域的垂直搜索引擎,专门为用户提供团购.优惠券的检索:同时存在一个通用的搜索引擎,比如百度,通用搜索引擎希望能够识别出一个Query是否具有O2O检索意图,如果有则调用O2O垂直搜索引擎,获取结果作为通用搜索引擎的结果补充. 我们的目的是学习出一个分类器(classifier),分类器可以理解为一个函数,

Python之扩展包安装(scikit learn)

scikit learn 是Python下开源的机器学习包.(安装环境:win7.0 32bit和Python2.7) Python安装第三方扩展包较为方便的方法:easy_install + packages name 在官网 https://pypi.python.org/pypi/setuptools/#windows-simplified 下载名字为 的文件. 在命令行窗口运行 ,安装后,可在python2.7文件夹下生成Scripts文件夹.把路径D:\Python27\Scripts

scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类

scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import numpy as np from sklearn.pipeline import Pipeline from sklearn.linear_model import SGDClassifier from sklearn.grid_search import GridSearchCV from sk

Linear Regression with Scikit Learn

Before you read ?This is a demo or practice about how to use Simple-Linear-Regression in scikit-learn with python. Following is the package version that I use below: The Python version: 3.6.2 The Numpy version: 1.8.0rc1 The Scikit-Learn version: 0.19

Scikit Learn安装教程

Windows下安装scikit-learn 准备工作 Python (>= 2.6 or >= 3.3), Numpy (>= 1.6.1) Scipy (>= 0.9), Matplotlib(可选). NumPy NumPy系统是Python的一种开源的数值计算扩展.这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该结构也可以用来表示矩阵(matrix)). Scipy SciPy是一款方便.易于使用

Scikit Learn

安装pip 代码如下:# wget "https://pypi.python.org/packages/source/p/pip/pip-1.5.4.tar.gz#md5=834b2904f92d46aaa333267fb1c922bb" --no-check-certificate# tar -xzvf pip-1.5.4.tar.gz# cd pip-1.5.4# python setup.py install 输入pip如果能看到信息证明安装成功. 安装scikit-learn