python 数据结构之归并排序

def merger_sort(alist):
    if len(alist) <= 1 :
        return alist
    num=int(len(alist)/2)
    left=merger_sort(alist[:num])
    right=merger_sort(alist[num:])   #分前后两个顺序
    return merger(left,right)

def merger(left,right):
    l,r=0,0
    result = []  # 存放结果
    while l < len(left) and r < len(right):
        if left[l]<right[r]:
            result.append(left[l])
            l+=1
        else :
            result.append(right[r])
            r+=1
    result+=left[l:]
    result+=right[r:]
    return result

alist=[0,1,45,86,9,3,10,4,2]
b=merger_sort(alist)
print(b)

归并排序就是简单的将数组进行一分组,我们可以理解为简单的分治算法,然后分别取两个中的数组进行排序和重组,当然在python中是列表,我在编写代码时犯了两个致命错误,将原来的列表输出,忘记将排序后的列表重组。

原文地址:https://www.cnblogs.com/kk328/p/9749703.html

时间: 2024-10-25 17:47:01

python 数据结构之归并排序的相关文章

python数据结构与算法 34 归并排序

归并排序 在提高排序算法性能的方法中,有一类叫做分而治之.我们先研究其中第一种叫做归并排序.归并排序使用递归的方法,不停地把列表一分为二.如果列表是空或只有一个元素,那么就是排好序的(递归基点),如果列表有超过1个的元素,那么切分列表并对两个子列表递归使用归并排序.一旦这两个列表排序完成,称为"归并"的基本操作开始执行.归并是把两个有序列表合并成一个新的有序列表的过程.图10是我们熟悉的列表样例分解过程,图11是归并的过程. 图10  切分过程 图11  归并过程 以下是mergeSo

python数据结构与算法 35 快速排序

快速排序 快速排序也使用了分而治之的策略来提高性能,而且不需要额外的内存,但是这么做的代价就是,列表不是对半切分的,因而,性能上就有所下降. 快速排序选择一个数值,一般称为"轴点",虽然有很多选取轴点的方法,我们还是简单地把列表中第一个元素做为轴点了.轴点的作用是帮助把列表分为两个部分.列表完成后,轴点所在的位置叫做"切分点",从这一点上把列表分成两部分供后续调用. 图12所示,54将作为轴点.这个例子我们已经排过多次了,我们知道54在排好序后将处于现在31的位置上

Python数据结构

1. 元组(tuple) 元组由不同的元素组成,每个元素可以储存不同类型的数据,如字符串.数字甚至元组.元组是写保护的,即元组创建后不能再做任何修改操作. 1.1 元组的创建 Tuple(元组)由一系列元素组成,所有元素被包含在一对圆括号中.创建元组时可以不指定元素个数,但一旦创建后就不能修改长度 元组的创建格式如下:tuple_name = (元素1,元素2,-) 如果创建空元组,只需要一对空的圆括号:tuple_name = () 如果创建的元组只包含一个元素,应在元素后面加上逗号,以区分元

Python数据结构——散列表

散列表的实现常常叫做散列(hashing).散列仅支持INSERT,SEARCH和DELETE操作,都是在常数平均时间执行的.需要元素间任何排序信息的操作将不会得到有效的支持. 散列表是普通数组概念的推广.如果空间允许,可以提供一个数组,为每个可能的关键字保留一个位置,就可以运用直接寻址技术. 当实际存储的关键字比可能的关键字总数较小时,采用散列表就比较直接寻址更为有效.在散列表中,不是直接把关键字用作数组下标,而是根据关键字计算出下标,这种 关键字与下标之间的映射就叫做散列函数. 1.散列函数

python中的归并排序

本来在博客上看到用python写的归并排序的程序,然后自己跟着他写了一下,结果发现是错的,不得不自己操作.而自己对python不是很了解所以就变百度边写,终于在花了半个小时之后就写好了. def merge(a, first, end, temp): if first < end: mid = (first+end)//2 merge(a, first, mid, temp) #前半部分拍好序 merge(a, mid+1, end, temp) #后半部分拍好序 merger(a, first

python数据结构与算法 38 分析树

分析树 树的结构完成以后,该是时候看看它能做点什么实事儿了.这一节里,我们研究一下分析树.分析树能够用于真实世界的结构表示,象语法或数学表达式一类的. 图1 一个简单语句的分析树 图1所示是一个简单语句的层级结构,把语句表示为树结构可以让我们用子树来分析句子的组成部分. 图2 ((7+3)?(5?2))的分析树 我们也可以把数学表达式如((7+3)?(5?2))表示为分析树,如图2.此前我们研究过完全括号表达式,这个表达式表达了什么呢?我们知道乘法的优先级比加减要高,但因为括号的关系,在做乘法之

python数据结构与算法 36 树的基本概念

树 学习目标 理解什么是树及使用方法 学会使用树实现映射 用列表实现树 用类和引用实现树 用递归实现树 用堆实现优先队列 树的例子 前面我们学习过栈和队列这类线性数据结构,并且体验过递归,现在我们学习另一种通用数据结构,叫做树.树在计算机科学中应用广泛,象操作系统.图形学.数据库系统.网络等都要用到树.树和他们在自然界中的表哥--植物树--非常相似,树也有根,有分枝,有叶子.不同之处是,数据结构的树,根在顶上,而叶子在底部. 在开始学习之前,我们来研究几个普通的例子.第一个是生物学上的分级树.图

Python学习日志之Python数据结构初识

Python数据结构初识: 一.Python数据结构概述 1.何为数据结构 在程序中,同样的一个或几个数据组织起来,可以有不同的组织方式,也就是不同的存储方式,不同的组织方式就是不同的结构,我们把这些数据组织在一起的结构就叫做数据结构 例如: 有一串字符串:"abc",我们将它重新组织一下,比如通过list()函数将"abc"变成["a","b","c"],那么这个时候数据发生了重组,重组之后的结构就发生了

[笔记]python数据结构之线性表:linkedlist链表,stack栈,queue队列

python数据结构之线性表 python内置了很多高级数据结构,list,dict,tuple,string,set等,在使用的时候十分舒心.但是,如果从一个初学者的角度利用python学习数据结构时,这些高级的数据结构可能给我们以迷惑. 比如,使用list实现queue的时候,入队操作append()时间复杂度可以认为是O(1),但是,出队操作pop(0)的时间复杂度就是O(n). 如果是想利用python学学数据结构的话,我觉得还是自己实现一遍基本的数据结构为好. 1.链表 在这里,我想使