音乐旋律提取算法 附可执行demo

前面提及过,音频指纹算法的思路。

也梳理开源了两个比较经典的算法。

https://github.com/cpuimage/shazam

https://github.com/cpuimage/AudioFingerprinter

后来一段时间,稍微看了下这两个算法,还有不少可以精简优化的空间。

例如抗噪,特征有效性等优化思路。

音频指纹切片后的hash特征信息还是太多了,

不过作为哼唱搜歌的基本应用,是足够的了。

不过我觉得还是可以再进一步提取歌曲的旋律特征的,在音频指纹的基础上更进一步。

  旋律是最重要的音乐要素之一,多应用于音乐内容分析、音乐创作、音乐教育、抄袭检测等方面。

主旋律提取旨在从一段音乐中自动估计对应于主旋律单音音符序列的音高或基频。

流行音乐一般属于复杂的多音音乐,因此主旋律提取面临着许多挑战。

  在这里要特别说一下,音频处理领域碰到的问题都是相似的。首当其冲主要是噪声,其次是音量和语速。

特别是在一些场景下的asr识别,例如实时对话,同声传译之类环境下,语速和音量的干扰影响很多时候多过于噪声。

而很多提供asr服务的厂商对这类情况支持不佳,而据我所知,讯飞的asr中是有内置前处理算法的。

好像有点偏题了,回到主题上来。

也就是说不管做音频还是音乐 上面提到的问题都会造成一定精度影响。

音频前处理算法是非常重要的,一直在做这方面的研究工作,前面着重于降噪和增益方向,下一步应该会着重在语速方面的研究。

而刚才提到的旋律,也可以认为是语速的一个点。

旋律,节奏,节拍,精确准确度从另一个侧面就可以评估语速,以及风格内容。

所以提取旋律节奏是一个非常值得研究的课题。

也许大家最熟悉的应用场景应该是 游戏节奏类app或者唱K的旋律评分系统。

关于旋律提取这方面的资料比较有限。

在这方向上面,一开始我也是有点蒙圈。

直到我看到一个思路,我突然间豁然开朗。

那就是将歌曲音频 转换为midi电子音乐。

众所周知,midi电子音乐体积非常非常小,在游戏领域应用非常广,几乎是标配。

例如超级玛丽的背景音乐,经典中的经典。

那么是不是可以实现一种算法,将音频转为midi,作为此段音频的指纹呢?

理论上,完全可行,而且刚才提到的唱K的评分系统就是类似的实现。

参照下图:

上面是一段音乐,下面是其对于的midi。

把这个图放大给大家感受一下。

是不是有似曾相识的感觉。

KTV 的节奏条。

所以毫无疑问,KTV的评分系统极其有可能就是采用了MIDI作为声纹进行相似度匹配,

最后给出评分。

当然关于旋律提取有很多不同的实现,不过,大多数算法都有3个共同的目的,

分别是算法的速度性能(复杂度),最终效果,抗噪抗干扰。

针对这三个方面,各有各的技巧。

如果能兼顾三者,无疑是最佳的。

而关于wav转midi的资料,真的是极其稀少。

大概有:

1. https://github.com/mrk21/wav2midi

https://mrk21.kibe.la/shared/entries/3931bfea-0f31-4aa1-9e72-b7cd6f010697

2.https://github.com/justinsalamon/audio_to_midi_melodia

http://www.justinsalamon.com/melody-extraction.html

仔细学习查阅之后,你会跟我一开始一样,一脸懵逼。

首先,第三方依赖特别多,也就意味着,这个算法并不简单。

就效果对比而言,audio_to_midi_melodia 更佳,当然深度学习大火之后

也有人在尝试通过深度学习的方式,建立wav 到 midi的映射。以寻求新的突破。

当然还在试验阶段,暂时还没看到有特别优秀的模型放出。

不过可以拭目以待。

而这个算法有多复杂,看下算法的流程图:

说难也不难,说简单也不简单。

大部分环节是为了解决语速,音量,噪音所造成的误差问题,使得算法更佳稳定,更鲁棒。

根据这个思路,自行实现算法并不困难。

改进算法思路的首要前提,理解算法的核心思想,

所以至少你要把整个算法思路实现一遍,加深理解,不管能否理解到精髓。

然后站在巨人的肩膀上,继续改进。

这个算法花了我一段时间去实现,原本预计几个星期可以搞定,

但是后来因为其他原因搁置了。

趁国庆假期,捡起来,把一些工作继续推进,复现了该算法。

这个过程挺漫长的,有不少环节还可以进一步改进优化。

不过这是后面的工作了。

算法暂没有开源计划,放出demo 供大家评测。

这个方向的算法,

有一个专用名词叫做mir, 全称 为 music/audio information retrieval/signal processing 。

有兴趣的朋友,可以查阅一下相关资料。

基本上都是dsp(数字信号处理)。

学习dsp必须把傅里叶变换好好理解一下。

为了理解傅里叶变换的算法思路,我把市面上能找到的实现,都过了一遍。

用纯c 进行学习复现,也足足花了我1个多月的业余时间,

就差喷一口老血出来。

可执行demo下载地址:

https://files.cnblogs.com/files/cpuimage/wav2midi.zip

使用方法:拖放wav文件到可执行文件上即可。

或者采用命令行 wav2midi.exe demo.wav

执行后生成 demo.mid 文件。

目前仅支持wav的1通道和2通道格式,其他的格式暂没做支持。

在学习音频算法的时候,经常会联系到图像方面的算法,进行类比,举一反三。

都有共通的地方,就看你怎么应用了,温故而知新。

用以前说过的一句话来总结就是,

任何算法都有缺点,但是一定要用它最优秀的思路。

就好比说,用人只要用其长处,天下皆是可用之才。

若有其他相关问题或者需求也可以邮件联系俺探讨。

邮箱地址是: 
[email protected]

原文地址:https://www.cnblogs.com/cpuimage/p/9747247.html

时间: 2024-10-10 11:22:29

音乐旋律提取算法 附可执行demo的相关文章

Android 高仿 频道管理----网易、今日头条、腾讯视频 (可以拖动的GridView)附源码DEMO

距离上次发布(android高仿系列)今日头条 --新闻阅读器 (二) 相关的内容已经半个月了,最近利用空闲时间,把今日头条客户端完善了下.完善的功能一个一个全部实现后,就放整个源码.开发的进度就是按照一个一个功能的思路走的,所以开发一个小的功能,如果有用,就写一个专门的博客以便有人用到独立的功能可以方便使用. 这次实现的功能是很多新闻阅读器(网易,今日头条,360新闻等)以及腾讯视频等里面都会出现的频道管理功能. 下面先上这次实现功能的效果图:(注:这个效果图没有拖拽的时候移动动画,DEMO里

mser 最大稳定极值区域(文字区域定位)算法 附完整C代码

mser 的全称:Maximally Stable Extremal Regions 第一次听说这个算法时,是来自当时部门的一个同事, 提及到他的项目用它来做文字区域的定位,对这个算法做了一些优化. 也就是中文车牌识别开源项目EasyPR的作者liuruoze,刘兄. 自那时起就有一块石头没放下,想要找个时间好好理理这个算法. 学习一些它的一些思路. 因为一般我学习算法的思路:3个做法, 第一步,编写demo示例. 第二步,进行算法移植或效果改进. 第三步,进行算法性能优化. 然后在这三个过程中

音频降噪算法 附完整C代码

降噪是音频图像算法中的必不可少的. 目的肯定是让图片或语音 更加自然平滑,简而言之,美化. 图像算法和音频算法 都有其共通点. 图像是偏向 空间 处理,例如图片中的某个区域. 图像很多时候是以二维数据为主,矩形数据分布. 音频更偏向 时间 处理,例如语音中的某短时长. 音频一般是一维数据为主,单声道波长. 处理方式也是差不多,要不单通道处理,然后合并,或者直接多通道处理. 只是处理时候数据参考系维度不一而已. 一般而言, 图像偏向于多通道处理,音频偏向于单通道处理. 而从数字信号的角度来看,也可

[搜索]波特词干(Porter Streamming)提取算法详解(3)

 接上 [搜索]波特词干(Porter Streamming)提取算法详解(2) 下面分为5大步骤来使用前面提到的替换条件来进行词干提取. 左边是规则,右边是提取成功或者失败的例子(用小写字母表示). 步骤1 SSES -> SS                   caresses  ->  caress IES  -> I                          ponies    ->  poni ties      ->  ti SS   -> S

【网站国际化必备】Asp.Net MVC 集成Paypal(贝宝)快速结账 支付接口 ,附源码demo

开篇先给大家讲段历史故事,博主是湖北襄阳人.襄阳物华天宝,人杰地灵,曾用名襄樊.在2800多年的历史文化中出现了一代名相诸葛亮(卧龙),三国名士庞统(凤雏),魏晋隐士司马徽(水镜先生),唐代大诗人孟浩然(孟襄阳),张继.杜审言,文学家皮日休,北宋著名书画家米芾(米襄阳),“允冠百王”的光武帝刘秀,东方圣人释道安等一大批历史文化名人.小说<三国演义>120回故事中有30多回提到襄阳. 相传诸葛亮的老婆黄月英黄头发黑皮肤,但知识广博.诸葛亮发明木牛流马,就是从黄月英的传授的技巧上发展出来.不仅如此

文本特征词提取算法

在文本分类中,需要先对文本分词,原始的文本中可能由几十万个中文词条组成,维度非常高.另外,为了提高文本分类的准确性和效率,一般先剔除决策意义不大的词语,这就是特征词提取的目的.本文将简单介绍几种文本特征词提取算法. 信息增益(IG) 对于一个系统,其信息熵为\(H(S)=-\sum_{i}^{C}P_ilog_2(P_i)\).\(C\)表示类别个数,\(P_i\)表示第\(i\)的类别的概率.某个特征\(F\),有该特征和没有该特征,信息量的变化,就是信息增益. 对特征\(F\),它的取值有\

三维等值面提取算法(Dual Contouring)

上一篇介绍了Marching Cubes算法,Marching Cubes算法是三维重建算法中的经典算法,算法主要思想是检测与等值面相交的体素单元并计算交点的坐标,然后对不同的相交情况利用查找表在体素单元内构建相应的网格拓扑关系.Marching Cubes算法简单,但是存在一些缺陷:1.模型二义性问题:2.模型特征问题. 对于二义性问题,以2D情形为例,存在一个单元中同一顶点状态而不同的连接方式(如下图所示). 图:2D中Marching Cubes算法的二义性问题 那么对于上图中两种连接方式

基于高维聚类技术的中文关键词提取算法

[摘要]关键词提取是中文信息处理技术的热点和难点,基于统计信息的方法是其中一个重要分支.本文针对基于统计信息关键词提取方法准确率低的问题,提出基于高维聚类技术的中文关键词提取算法.算法通过依据小词典的快速分词.二次分词.高维聚类及关键词甄选四个步骤实现关键词的提取.理论分析和实验显示,基于高维聚类技术的中文关键词提取方法具备更好的稳定性.更高的效率及更准确的结果. 引言  关键词提取是通过对一篇输入文章做内容分析,按一定比例或字数要求提取出重要且语义相似性凝聚的关键词的过程.关键词自动提取是文本

文本关键词提取算法

1.TF-IDF 2.基于语义的统计语言模型 文章关键词提取基础件能够在全面把握文章的中心思想的基础上,提取出若干个代表文章语义内容的词汇或短语,相关结果可用于精化阅读.语义查询和快速匹配等. 采用基于语义的统计语言模型,所处理的文档不受行业领域限制,且能够识别出最新出现的新词语,所输出的词语可以配以权重. 3.TF-IWF文档关键词自动提取算法 针对现有TF-IWF的领域文档关键词快速提取算法.该算法使用简单统计并考虑词长.位置.词性等启发性知识计算词权重,并通过文档净化.领域词典 分词等方法