SQLAlchemy 增删改查 一对多 多对多

  • 安装介绍
  • 创建
  • 增删改查相关操作
  • 高级版查询操作
  • 高级版更新操作
  • 扩展内容

安装介绍

- SQLAlchemy 是Python的一款Orm框架

创建

from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String

#创建基类,相当于Django中的 models.Model,被各个数据表类所继承
Base = declarative_base()

# ##################### 单表示例 #########################
# 创建一张数据表
class Users(Base):
    __tablename__ = ‘users‘

    id = Column(Integer, primary_key=True)
    name = Column(String(32), index=True)

    __table_args__ = (
        # UniqueConstraint(‘id‘, ‘name‘, name=‘uix_id_name‘),
        # Index(‘ix_id_name‘, ‘name‘, ‘extra‘),
    )

# 创建另一张数据表
class School(Base):
    __tablename__ = "school"

    id = Column(Integer,primary_key=True,autoincrement=True)
    name = Column(String,unique=True)

# 创建数据库链接
engine = create_engine(
        "mysql+pymysql://root:[email protected]:3306/dragon?charset=utf8",
        max_overflow=0,  # 超过连接池大小外最多创建的连接
        pool_size=5,  # 连接池大小
        pool_timeout=30,  # 池中没有线程最多等待的时间,否则报错
        pool_recycle=-1  # 多久之后对线程池中的线程进行一次连接的回收(重置)
    )

# 通过Base.metadata找到所有继承 Base 的数据表class
Base.metadata.create_all(engine)

# SQLAlchemy数据表进行修改后,无法直接进行更新,只能删除表后进行操作,重新进行操作

增删改查相关操作

from CreateDB import Users, School

# 1. 创建一个用户添加到数据库
# 创建连接
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
engine = create_engine("mysql+pymysql://root:[email protected]:3306/dragon?charset=utf8",
                       )

# 创建数据表操作对象 sessionmaker
DB_session = sessionmaker(engine)
db_session = DB_session()

# 1.增加 操作数据表
# 单行操作
# obj1 = Users(name="123") # 通过 Users数据表类创建一条数据
# db_session.add(obj1) # 将创建好的数据添加到 数据表操作对象的内存中,此时数据库还并不知道要添加数据
# db_session.commit() # 将数据表操作对象内存中的所有数据及操作提交到数据库中
# 多行操作
# db_session.add_all([
#     Users(name="zhangsan"),
#     Users(name="lisi"),
# ])
# db_session.commit()

# 2.查询 数据表操作
# user_list = db_session.query(Users).all() # 查询所有数据
# user_list = db_session.query(Users).filter(Users.id >=2 ) # 查询带有条件的数据 表达式 返回sql语句,循环依然可以获取到数据
# user_list = db_session.query(Users).filter(Users.id >=2 ).all() # 查询带有条件的数据 表达式 返回数据列表
# print(user_list)
# for row in user_list:
#     print(row.id,row.name)

# 3.删除数据 数据表操作
# db_session.query(Users).filter(Users.id == 1).delete() # 删除带有条件的数据
# db_session.commit()

# 4.修改
# db_session.query(Users).filter(Users.id == 3).update({"name":"alexDSB"}) # 更新id=3的数据
# db_session.commit()

# 关闭连接
db_session.close()

高级版查询操作

from CreateDB import Users, School

# 1. 创建一个用户添加到数据库
# 创建连接
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
engine = create_engine("mysql+pymysql://root:[email protected]:3306/dragon?charset=utf8",
                       )

# 创建数据表操作对象 sessionmaker
DB_session = sessionmaker(engine)
db_session = DB_session()

# 查询数据表操作
"""
r1 = session.query(Users).all()
r2 = session.query(Users.name.label(‘xx‘), Users.age).all()
r3 = session.query(Users).filter(Users.name == "alex").all()
r4 = session.query(Users).filter_by(name=‘alex‘).all()
r5 = session.query(Users).filter_by(name=‘alex‘).first()
r6 = session.query(Users).filter(text("id<:value and name=:name")).params(value=224, name=‘fred‘).order_by(Users.id).all()
r7 = session.query(Users).from_statement(text("SELECT * FROM users where name=:name")).params(name=‘ed‘).all()
"""
# 筛选查询列
# user_list = db_session.query(Users.name).all()
# print(user_list) # [(‘alexDSB‘,), (‘zhangsan‘,)] 虽然看到的是元祖,但是依然可以通过对象打点儿调用属性
# for row in user_list:
#     print(row.name)

# 别名映射  name as nick
# user_list = db_session.query(Users.name.label("nick")).all()
# print(user_list) # [(‘alexDSB‘,), (‘zhangsan‘,)] 虽然看到的是元祖,但是依然可以通过对象打点儿调用属性
# for row in user_list:
#     print(row.nick) # 这里要写别名了

# 筛选条件格式
# user_list = db_session.query(Users).filter(Users.name == "alexDSB").all()
# user_list = db_session.query(Users).filter(Users.name == "alexDSB").first()
# user_list = db_session.query(Users).filter_by(name="alexDSB").first()
# for row in user_list:
#     print(row.nick)

# 复杂查询
# from sqlalchemy.sql import text
# user_list = db_session.query(Users).filter(text("id<:value and name=:name")).params(value=3,name="alexDSB")

# 查询语句
# from sqlalchemy.sql import text
# user_list = db_session.query(Users).filter(text("select * from users id<:value and name=:name")).params(value=3,name="alexDSB")

# 排序 :
# user_list = db_session.query(Users).order_by(Users.id).all()
# user_list = db_session.query(Users).order_by(Users.id.desc()).all()
# for row in user_list:
#     print(row.name,row.id)

#其他查询条件
"""
ret = session.query(Users).filter_by(name=‘alex‘).all()
ret = session.query(Users).filter(Users.id > 1, Users.name == ‘eric‘).all()
ret = session.query(Users).filter(Users.id.between(1, 3), Users.name == ‘eric‘).all() # between 大于1小于3的
ret = session.query(Users).filter(Users.id.in_([1,3,4])).all() # in_([1,3,4]) 只查询id等于1,3,4的
ret = session.query(Users).filter(~Users.id.in_([1,3,4])).all() # ~xxxx.in_([1,3,4]) 查询不等于1,3,4的
ret = session.query(Users).filter(Users.id.in_(session.query(Users.id).filter_by(name=‘eric‘))).all() 子查询
from sqlalchemy import and_, or_
ret = session.query(Users).filter(and_(Users.id > 3, Users.name == ‘eric‘)).all()
ret = session.query(Users).filter(or_(Users.id < 2, Users.name == ‘eric‘)).all()
ret = session.query(Users).filter(
    or_(
        Users.id < 2,
        and_(Users.name == ‘eric‘, Users.id > 3),
        Users.extra != ""
    )).all()
# select * from users where id<2 or (name="eric" and id>3) or extra != ""
"""

# 关闭连接
db_session.close()

高级版更新操作

"""
db_session.query(Users).filter(Users.id > 0).update({"name" : "099"})
db_session.query(Users).filter(Users.id > 0).update({Users.name: Users.name + "099"}, synchronize_session=False)
db_session.query(Users).filter(Users.id > 0).update({"age": Users.age + 1}, synchronize_session="evaluate")
db_session.commit()
"""

扩展内容

- 一对多:

- 创建表:

from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey
from sqlalchemy.orm import relationship

#创建基类,相当于Django中的 models.Model,被各个数据表类所继承
Base = declarative_base()

# ##################### 多表示例 #########################
# 创建一张数据表
class Author(Base):
    __tablename__ = ‘author‘

    id = Column(Integer, primary_key=True)
    name = Column(String(32), index=True)

#  创建另一张数据表
class Book(Base):
    __tablename__ = ‘book‘

    id = Column(Integer, primary_key=True)
    name = Column(String(32), index=True)

    author_id = Column(Integer,ForeignKey("author.id"))

    # relationshi 不会单独生成字段 ,只用于增加查询操作
    user = relationship("Author",backref="author2book") # backref 反向查找的名字

# 创建数据库链接
engine = create_engine(
        "mysql+pymysql://root:[email protected]:3306/dragon?charset=utf8",
        max_overflow=0,  # 超过连接池大小外最多创建的连接
        pool_size=5,  # 连接池大小
        pool_timeout=30,  # 池中没有线程最多等待的时间,否则报错
        pool_recycle=-1  # 多久之后对线程池中的线程进行一次连接的回收(重置)
    )

# 通过Base.metadata找到所有继承 Base 的数据表class
Base.metadata.create_all(engine)

- 增删改查:

from SQLAlchemy_ready.ss2_ForeignKey_relationship import Author, Book

# 1. 创建一个用户添加到数据库
# 创建连接
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
engine = create_engine("mysql+pymysql://root:[email protected]:3306/dragon?charset=utf8",
                       )

# 创建数据表操作对象 sessionmaker
DB_session = sessionmaker(engine)
db_session = DB_session()

# 1.增加 操作数据表
# 添加两个作者:
# db_session.add_all([
#     Author(name="alex"),
#     Author(name="yinwangba")
# ])
# db_session.commit()
# 添加一本书 jinpingmei 作者是 yinwangba
# author = db_session.query(Author).filter(Author.name == "yinwangba").first()
# db_session.add(Book(name="jinpingmei",author_id=author.id))
# db_session.commit()

# 2.查询所有数据,并显示作者名称,连表查询
# book_list = db_session.query(Book).all()
# for row in book_list:
#     print(row.name,row.author_id)

# book_list = db_session.query(Book.name.label("bname"),Author.name.label ("aname")).join(Author,Book.author_id == Author.id,isouter=True).all()
# print(book_list)
# for row in book_list:
#     print(row.aname,row.bname)

# 查询之relationship 快速连表
# 创建表的时候加入 relationship
#普通版添加
# obj = Author(name="yinwangba")
# db_session.add(obj)
# db_session.commit()
# print(obj.id,obj.name)
#
# obj_book = Book(name="jinpingmei",author_id=obj.id)
# db_session.add(obj_book)
# db_session.commit()
# obj = Author(name="yinwangba")

# relationship版 添加
# bobj = Book(name="jinpingmei",user=Author(name="yinwangba"))
# db_session.add(bobj)
# db_session.commit()

# 查询之relationship 快速连表
# book_list = db_session.query(Book).all()
# for row in book_list:
#     print(row.name,row.user.name)

# 查询作者的所有书籍
# obj = db_session.query(Author).filter(Author.name=="yinwangba").first()
# print(obj.author2book)

# 反向字段添加
# author_obj = Author(name="alex")
# author_obj.author2book = [Book(name="儒林外史之银林大战"),Book(name="邻家小妹妹")]
# db_session.add(author_obj)
# db_session.commit()

# 关闭连接
db_session.close()

- 多对多 ManyToMany:

  - 创建表:

import datetime
from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, Text, ForeignKey, DateTime, UniqueConstraint, Index
from sqlalchemy.orm import relationship

#创建基类,相当于Django中的 models.Model,被各个数据表类所继承
Base = declarative_base()

# 创建第三张表 Boys and Girls
class Hotel(Base):
    __tablename__ = "hotel"

    id = Column(Integer,primary_key=True)
    boy_id = Column(Integer,ForeignKey("boys.id"))
    girl_id = Column(Integer,ForeignKey("girls.id"))

# 创建一张数据表
class Boys(Base):
    __tablename__ = ‘boys‘

    id = Column(Integer, primary_key=True)
    name = Column(String(32), index=True)

    # 创建于酒店的关系
    girls = relationship("Girls",secondary="hotel",backref="boys")

# 创建另一张数据表
class Girls(Base):
    __tablename__ = "girls"

    id = Column(Integer,primary_key=True,autoincrement=True)
    name = Column(String(32),index  =True)

    # 创建于酒店的关系
    # boy = relationship("Boys",secondary="hotel",backref="toHotel")

# 创建数据库链接
engine = create_engine(
        "mysql+pymysql://root:[email protected]:3306/dragon?charset=utf8",
        max_overflow=0,  # 超过连接池大小外最多创建的连接
        pool_size=5,  # 连接池大小
        pool_timeout=30,  # 池中没有线程最多等待的时间,否则报错
        pool_recycle=-1  # 多久之后对线程池中的线程进行一次连接的回收(重置)
    )

# 通过Base.metadata找到所有继承 Base 的数据表class
Base.metadata.create_all(engine)

# SQLAlchemy数据表进行修改后,无法直接进行更新,只能删除表后进行操作,重新进行操作,
# 但Flask-SQLAlchemy + Flask-migrate + Flask-script 就可以实现 Django 的数据迁移 MakeMigration migrate

#

多对多关系建立

- 操作:

from SQLAlchemy_ready.ss4_M2M import Girls, Boys,Hotel

# 1. 创建一个用户添加到数据库
# 创建连接
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
engine = create_engine("mysql+pymysql://root:[email protected]:3306/dragon?charset=utf8")

# 创建数据表操作对象 sessionmaker
DB_session = sessionmaker(engine)
db_session = DB_session()

# 1.增加 操作数据表
# boy = Boys(name="jinwangba")
# boy.girls = [Girls(name="fengjie"),Girls(name="juaner")]
# db_session.add(boy)
# db_session.commit()

# 2.查询
# 使用relationship正向查询
# boy = db_session.query(Boys).first()
# print(boy.name,boy.girls[0].name)

# 使用relationship反向查询
# girls = db_session.query(Girls).first()
# print(girls.boys[0].name , girls.name)

# 关闭连接
db_session.close()

原文地址:https://www.cnblogs.com/caodneg7/p/10235779.html

时间: 2024-10-09 23:21:44

SQLAlchemy 增删改查 一对多 多对多的相关文章

SQLAlchemy增删改查 一对多 多对多

一.前言: Python的ORM框架SQLAlchemy有些人相信也听过这个框架的大名了,也听说了SQLAlchemy没有Django的Models好用 我这里辟谣一下:Models仅仅只是配置和使用比较简单,因为他是Django自带的ORM框架,也正是因为Django原生的,所以兼容性远远不如SQLAlchemy,真正算的上全面的ORM框架必然是我们SQLAlchemy ORM框架,它可以在 任何使用SQL查询时使用,当然了,无论是使用什么ORM框架,都是为了方便不熟练数据库的同志们使用的,我

SQLAlchemyの增删改查

用a*my写原味sql from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import Column, Integer, String from sqlalchemy import create_engine Base = declarative_base() # 创建单表 class Users(Base): __tablename__ = 'users' id = Column(Integer, p

偏于SQL语句的 sqlAlchemy 增删改查操作

ORM 江湖 曾几何时,程序员因为惧怕SQL而在开发的时候小心翼翼的写着sql,心中总是少不了恐慌,万一不小心sql语句出错,搞坏了数据库怎么办?又或者为了获取一些数据,什么内外左右连接,函数存储过程等等.毫无疑问,不搞懂这些,怎么都觉得变扭,说不定某天就跳进了坑里,叫天天不应,喊地地不答. ORM 的出现,让畏惧SQL的开发者,在坑里看见了爬出去的绳索,仿佛天空并不是那么黑暗,至少再暗,我们也有了眼睛.顾名思义,ORM 对象关系映射,简而言之,就是把数据库的一个个table(表),映射为编程语

使用sqlalchemy对mysql进行增删改查

需求场景: 老大让我利用爬虫爬取的数据写到或更新到mysql数据库中,百度了两种方法,1 是使用pymysql连接mysql,通过操作原生的sql语句进行增删改查数据:2 是使用sqlalchemy连接mysql,通过ORM模型建表并操作数据库,不需要写原生的sql语句,相对简单些: 以下就是本次使用sqlalchemy的经验之谈. 实现流程:连接数据库>通过模型类创建表>建立会话>执行创建表语句>通过会话进行增删改查 from sqlalchemy import exists,

EF Codefirst 多对多关系 操作中间表的 增删改查(CRUD)

前言 此文章只是为了给新手程序员,和经验不多的程序员,在学习ef和lambada表达式的过程中可能遇到的问题. 本次使用订单表和员工表建立多对多关系. 首先是订单表: public class Order { public int OrderId { get; set; } public string OrderTitle { get; set; } public string CustomerName { get; set; } public DateTime TransactionDate

SQlAlchemy的增删改查

SQLAlchemy的使用 1.创建数据表 # ORM中的数据表是什么呢? # Object Relation Mapping # Object - Table 通过 Object 去操纵数据表 # 从而引出了我们的第一步创建数据表 - 创建Object # 1. 创建Object # class User(object): # pass # 2. 让Object与数据表产生某种关系 也就是让Object与数据表格式极度相似 # 导入官宣基础模型(SQLAlchemy) from sqlalch

SSH学习四 Hibernate多对一的关系 + 增删改查

多对一关系实现起来不难,只需要在"多"的一方声明外键,声明外键在类的映射文件实现. 下面以老师学生为例,老师是1,学生是多 有一个有趣的地方,在Student类里面,没有声明teacherid这个属性,但是只要在配置文件声明了外键,那么就算类里面没有外键,配置文件的property也没有teacherid 下面是几个关键文件: 1.Student类(包含Student的增删改查) package com.learn.po; import org.hibernate.Session; i

MyBatis学习之简单增删改查操作、MyBatis存储过程、MyBatis分页、MyBatis一对一、MyBatis一对多

一.用到的实体类如下: Student.java [html] view plaincopy package com.company.entity; import java.io.Serializable; import java.util.Date; public class Student implements Serializable{ private static final long serialVersionUID = 1L; private int id; private Stri

hibernate多对多关系配置--增删改查

hibernate多对多关联配置--并实现增删改查 hibernate就不多介绍了,这里就直接上我项目中使用的例子做说明. 数据模型 这是项目中用户和用户组的数据模型er图草稿,具体的model对象字段就以项目中的为主了. model类以及pojo接口,这里pojo接口用不上,大家测试的时候也可以去掉 package com.supre.model; import java.io.Serializable; import java.util.Set; public class User { pr