[Python Cookbook] Numpy: Iterating Over Arrays

1. Using for-loop

Iterate along row axis:

1 import numpy as np
2 x=np.array([[1,2,3],[4,5,6]])
3 for i in x:
4     print(x)

Output:

p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Menlo; color: #000000 }
span.s1 { }

[1 2 3]

[4 5 6]

2. Using ndenumerate object

for index, i in np.ndenumerate(x):     print(index,i)

Output:

p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 11.0px Menlo; color: #000000 }
span.s1 { }

(0, 0) 1

(0, 1) 2

(0, 2) 3

(1, 0) 4

(1, 1) 5

(1, 2) 6

3. Using nditer object

See: https://docs.scipy.org/doc/numpy-1.15.0/reference/arrays.nditer.html

原文地址:https://www.cnblogs.com/sherrydatascience/p/10206788.html

时间: 2024-10-15 10:27:28

[Python Cookbook] Numpy: Iterating Over Arrays的相关文章

[Python Cookbook] Numpy Array Joint Methods: Append, Extend & Concatenate

数组拼接方法一 思路:首先将数组转成列表,然后利用列表的拼接函数append().extend()等进行拼接处理,最后将列表转成数组. 示例1: import numpy as np a=np.array([1,2,5]) b=np.array([10,12,15]) a_list=list(a) b_list=list(b) a_list.extend(b_list) a_list [1, 2, 5, 10, 12, 15] a=np.array(a_list) a array([ 1,  2

[Python Cookbook] Numpy Array Manipulation

1. Reshape: The np.reshape() method will give a new shape to an array without changing its data. Note that the new shape should be compatible with the original shape. Here is how it works. np.reshape(a, newshape, order='C') p.p1 { margin: 0.0px 0.0px

[转]python与numpy基础

来源于:https://github.com/HanXiaoyang/python-and-numpy-tutorial/blob/master/python-numpy-tutorial.ipynb python与numpy基础 寒小阳(2016年6月) Python介绍 如果你问我没有编程基础,想学习一门语言,我一定会首推给你Python类似伪代码的书写方式,让你能够集中精力去解决问题,而不是花费大量的时间在开发和debug上同时得益于Numpy/Scipy这样的科学计算库,使得其有非常高效

「Python」Numpy equivalent of MATLAB's cell array

转自Stackoverflow.备忘用. Question I want to create a MATLAB-like cell array in Numpy. How can I accomplish this? Answer Matlab cell arrays are most similar to Python lists, since they can hold any object - but scipy.io.loadmat imports them as numpy objec

Python之Numpy详细教程

NumPy - 简介 NumPy 是一个 Python 包. 它代表 “Numeric Python”. 它是一个由多维数组对象和用于处理数组的例程集合组成的库. Numeric,即 NumPy 的前身,是由 Jim Hugunin 开发的. 也开发了另一个包 Numarray ,它拥有一些额外的功能. 2005年,Travis Oliphant 通过将 Numarray 的功能集成到 Numeric 包中来创建 NumPy 包. 这个开源项目有很多贡献者. NumPy 操作 使用NumPy,开

Windows系统下Python与NumPy安装方法

Windows系统下Python与NumPy安装方法 Windows下Python的某些第三方包安装步骤实在是太麻烦了(这里主要以NumPy为例,目前只有遇到安装它的时候出现了很多问题),晚上花了好几个小时才把NumPy科学计算包安装好,在这里描述下安装过程,避免大家走没有必要的弯路. 1,安装Python 首先,运行下载的MSI安装包,选择安装组件时,确保勾上了所有的组件. 特别要注意选上pip和Add python.exe to Path,然后多次点击Next即可完成安装. Python解释

windows下python配置numpy、matplotlib、scipy

这两天对Python进行了研究,并且配置了numpy.matplotlib以及scipy.现对基本概念以及配置步骤介绍: 基本概念: Python (英语发音:/?pa?θ?n/), 是一种面向对象.解释型计算机程序设计语言.专用的科学计算扩展库很多,例如如下3个十分经典的科学计算扩展库:NumPy.SciPy和matplotlib,它们分别为Python提供了快速数组处理.数值运算以及绘图功能. <python科学计算>这本书中对Python介绍得很是详细,推荐下.电子版下载链接http:/

《Python cookbook》 “定义一个属性可由用户修改的装饰器” 笔记

看<Python cookbook>的时候,第9.5部分,"定义一个属性可由用户修改的装饰器",有个装饰器理解起来花了一些时间,做个笔记免得二刷这本书的时候忘了 完整代码:https://github.com/blackmatrix7/python-learning/blob/master/python_cookbook/chapter_9/section_5/attach_wrapper.py 书中的装饰器(书中称之为访问器函数) def attach_wrapper(o

python和numpy的版本、安装位置

命令行下查看python和numpy的版本和安装位置 1.查看python版本 方法一: python -V 注意:‘-V‘中‘V’为大写字母,只有一个‘-’ 方法二: python --version 注意:‘--version'中有两个‘-’ 2.查看python安装位置 方法一: python -c "import sys; print sys.executable" 方法二: python -c "import os; print os.sys.executable&