HDU3853-LOOPS(概率DP求期望)

LOOPS

Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 125536/65536 K (Java/Others)

Total Submission(s): 1864    Accepted Submission(s): 732

Problem Description

Akemi Homura is a Mahou Shoujo (Puella Magi/Magical Girl).

Homura wants to help her friend Madoka save the world. But because of the plot of the Boss Incubator, she is trapped in a labyrinth called LOOPS.

The planform of the LOOPS is a rectangle of R*C grids. There is a portal in each grid except the exit grid. It costs Homura 2 magic power to use a portal once. The portal in a grid G(r, c) will send Homura to the grid below G (grid(r+1, c)), the grid on the
right of G (grid(r, c+1)), or even G itself at respective probability (How evil the Boss Incubator is)!

At the beginning Homura is in the top left corner of the LOOPS ((1, 1)), and the exit of the labyrinth is in the bottom right corner ((R, C)). Given the probability of transmissions of each portal, your task is help poor Homura calculate the EXPECT magic power
she need to escape from the LOOPS.

Input

The first line contains two integers R and C (2 <= R, C <= 1000).

The following R lines, each contains C*3 real numbers, at 2 decimal places. Every three numbers make a group. The first, second and third number of the cth group of line r represent the probability of transportation to grid (r, c), grid (r, c+1), grid (r+1,
c) of the portal in grid (r, c) respectively. Two groups of numbers are separated by 4 spaces.

It is ensured that the sum of three numbers in each group is 1, and the second numbers of the rightmost groups are 0 (as there are no grids on the right of them) while the third numbers of the downmost groups are 0 (as there are no grids below them).

You may ignore the last three numbers of the input data. They are printed just for looking neat.

The answer is ensured no greater than 1000000.

Terminal at EOF

Output

A real number at 3 decimal places (round to), representing the expect magic power Homura need to escape from the LOOPS.

Sample Input

2 2
0.00 0.50 0.50    0.50 0.00 0.50
0.50 0.50 0.00    1.00 0.00 0.00

Sample Output

6.000

题意:有R*C个格子,一个家伙要从(0,0)走到(R-1,C-1) 每次只有三次方向,分别是不动,向下,向右,告诉你这三个方向的概率,以及每走一步需要耗费两个能量,问你走到终点所需要耗费能量的数学期望:

思路:很裸的概率DP求期望,只是有一个坑点要注意,就是当分母为0的时候,浮点数只会出现NAN,而不会像整形那样报RE!

#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
using namespace std;
const int maxn =  1000+10;
const int dx[3] = {0,0,1};
const int dy[3] = {0,1,0};
const double eps = 1e-8;
double p[maxn][maxn][3];
int r,c;
double dp[maxn][maxn];
bool isok(int x,int y){
    return x>=0&&x<r && y>=0&&y <c &&!(x==r-1&&y==c-1);
}
int main(){

    while(~scanf("%d%d",&r,&c)){
        for(int i = 0; i < r; i++){
            for(int j = 0; j < c; j++){
                for(int k = 0; k < 3; k++){
                    scanf("%lf",&p[i][j][k]);
                }
            }
        }
        dp[r-1][c-1] = 0.0;
        for(int i = r-1; i >= 0; i--){
            for(int j = c-1; j >= 0; j--){
                double t = 2.0;
                for(int k = 1; k < 3; k++){
                    int xx = i + dx[k];
                    int yy = j + dy[k];
                    if(isok(xx,yy)){
                        t += dp[xx][yy]*p[i][j][k];
                    }
                }
                if(fabs(1-p[i][j][0])<eps) dp[i][j] = 0;
                else dp[i][j] = t/(1-p[i][j][0]);

            }
        }
        printf("%.3lf\n",dp[0][0]);
    }
    return 0;
}

HDU3853-LOOPS(概率DP求期望),布布扣,bubuko.com

时间: 2024-12-15 19:03:52

HDU3853-LOOPS(概率DP求期望)的相关文章

HDU 4405 Aeroplane chess (概率DP求期望)

题意:有一个n个点的飞行棋,问从0点掷骰子(1~6)走到n点需要步数的期望 其中有m个跳跃a,b表示走到a点可以直接跳到b点. dp[ i ]表示从i点走到n点的期望,在正常情况下i点可以到走到i+1,i+2,i+3,i+4,i+5,i+6 点且每个点的概率都为1/6 所以dp[i]=(dp[i+1]+dp[i+2]+dp[i+3]+dp[i+4]+dp[i+5]+dp[i+6])/6  + 1(步数加一). 而对于有跳跃的点直接为dp[a]=dp[b]; #include<stdio.h>

HDU4336-Card Collector(概率DP求期望)

Card Collector Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2195    Accepted Submission(s): 1034 Special Judge Problem Description In your childhood, do you crazy for collecting the beautifu

HDU4405-Aeroplane chess(概率DP求期望)

Aeroplane chess Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 1182    Accepted Submission(s): 802 Problem Description Hzz loves aeroplane chess very much. The chess map contains N+1 grids lab

HDU 4050 wolf5x (概率DP 求期望)

题意:有N个格子,1~N,起点在0,每个格子有一个状态(0,1,2,3),每次可以跨[a,b]步, 问走完N个格子需要步数的期望,每次尽量走小的步数,即尽量走a步,不能则走a+1,-- 状态0意味着你不能踏进对应的网格. 状态1意味着你可以??步入网格用你的左腿. 状态2意味着你可以??步入网格用你的右腿. 状态3意味着你可以进入网格用任何你的腿,而接下来的步骤中,您可以使用任何的腿;即你不需要遵循上述规则. 思路:借鉴了各路大神的思想理解了下. dp[i][j] :表示走到第 i 个格子在 j

POJ 2096 Collecting Bugs(概率DP求期望)

传送门 Collecting Bugs Time Limit: 10000MS Memory Limit: 64000K Total Submissions: 4333 Accepted: 2151 Case Time Limit: 2000MS Special Judge Description Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other material stu

Codeforces 235B Let&#39;s Play Osu! (概率dp求期望+公式变形)

B. Let's Play Osu! time limit per test:2 seconds memory limit per test:256 megabytes You're playing a game called Osu! Here's a simplified version of it. There are n clicks in a game. For each click there are two outcomes: correct or bad. Let us deno

HDU 3853 LOOPS(概率dp求期望啊)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3853 Problem Description Akemi Homura is a Mahou Shoujo (Puella Magi/Magical Girl). Homura wants to help her friend Madoka save the world. But because of the plot of the Boss Incubator, she is trapped in

POJ 2096:Collecting Bugs 概率DP求期望

Collecting Bugs 题目连接: http://poj.org/problem?id=2096 题意: Ivan喜欢收集bug,他每天都会找到一个bug,找到的这个bug有一种属性并且属于一个子系统,bug共有n种属性,子系统共有s个 (0<n, s≤1000),求Ivan集齐了n种bug且每个子系统都有bug的期望. 题解: 第一道求期望的题,令dp[i][j]表示系统已经有了i个系统的全部j种bug并且要得到所有bug的天数的期望,因此dp[n][s]=0,而dp[0][0]则是所

hdu 4405 Aeroplane chess(概率DP 求期望__附求期望讲解方法)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4405 Problem Description Hzz loves aeroplane chess very much. The chess map contains N+1 grids labeled from 0 to N. Hzz starts at grid 0. For each step he throws a dice(a dice have six faces with equal p