51nod 1907(多项式乘法启发式合并)

题目:

分析:

  对于一个确定的生成子图,很明显是在一个连通块上走,走完了再跳到另一个连通块上,假设连通块个数为cnt,那么答案一定是$min(a_{cnt-1},a_cnt,..,a_{n-1})$

   那现在的问题就是如何求出对于原图而言,连通块个数分别为1,2..n的生成子图的个数

  我们去考虑每条边的贡献

  在一个仙人掌上只有树边和回路上的边,对于树边如果删除那么肯定连通块个数+1,对于回路上的边,删除一条边不影响,再后面每删除一条边连通块个数+1

  我们可以写出它们的生成函数,然后乘起来

  对于树边的生成函数明显是$1+x$

  对于长度为k的回路,生成函数是$1+\binom{k}{1}+\binom{k}{2}x+\binom{k}{3}x^2+...+\binom{k}{k}x^{k-1}$

  然后将它们都乘起来就行了,但这样会TLE

  最坏的情况是$(1+x)^n$,这样相当于退化成$O(n^2logn)$,这是因为每次拿一个低阶多项式和一个高阶多项式相乘很浪费时间

  可以采取启发式合并,类似合并果子,每次取阶数最小的两个多项式进行NTT相乘,这样时间复杂度就是$O(nlog^2n)$的了

时间: 2024-10-25 13:20:36

51nod 1907(多项式乘法启发式合并)的相关文章

CodeForces 958F3 Lightsabers (hard) 启发式合并/分治 多项式 FFT

原文链接http://www.cnblogs.com/zhouzhendong/p/8835443.html 题目传送门 - CodeForces 958F3 题意 有$n$个球,球有$m$种颜色,分别编号为$1\cdots m$,现在让你从中拿$k$个球,问拿到的球的颜色所构成的可重集合有多少种不同的可能. 注意同种颜色球是等价的,但是两个颜色为$x$的球不等价于一个. $1\leq n\leq 2\times 10^5,\ \ \ \ \ 1\leq m,k\leq n$. 题解 来自Hel

51nod 1515 明辨是非 并查集 + set + 启发式合并

给n组操作,每组操作形式为x y p. 当p为1时,如果第x变量和第y个变量可以相等,则输出YES,并限制他们相等:否则输出NO,并忽略此次操作. 当p为0时,如果第x变量和第y个变量可以不相等,则输出YES,并限制他们不相等 :否则输出NO,并忽略此次操作. Input 输入一个数n表示操作的次数(n<=1*10^5) 接下来n行每行三个数x,y,p(x,y<=1*10^8,p=0 or 1) Output 对于n行操作,分别输出n行YES或者NO Input示例 3 1 2 1 1 3 1

FFT多项式乘法学习笔记

??其实我不知道我是否真的理解了FFT,但是我会用FFT优化多项式乘法了QAQ.. (以下大多摘自算导 前置知识 1. 多项式 ??在一个代数域F上,关于变量x的多项式定义为形式和形式表示的函数 A(x)=∑j=0n?1ajxj,其中a0-an?1为多项式各项的系数 2. 多项式的次数界 ??若多项式有非零系数的最高次项为xk,则称k为该多项式的次数,任何严格大于k的整数都是这个多项式的次数界. 3. 多项式的表示 (1)系数表示法 ??对于一个次数界为n的多项式A(x)来说,其系数表示法可以看

洛谷.3803.[模板]多项式乘法(FFT)

题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. #include <cmath> #include <cctype> #include <cstdio> #include <algorithm> #define gc() getchar() const int N=1e6+5; const double PI=acos(-1); int n,m; struct Complex { double

多项式乘法(FFT)学习笔记

------------------------------------------本文只探讨多项式乘法(FFT)在信息学中的应用如有错误或不明欢迎指出或提问,在此不胜感激 多项式 1.系数表示法     一般应用最广泛的表示方式     用A(x)表示一个x-1次多项式,a[i]为$ x^i$的系数,则A(x)=$ \sum_0^{n-1}$ a[i] * $ x^i$ 仅利用这种方式求多项式乘法复杂度为O($ n^2$),不够优秀2.点值表示法     将n个互不相同的值$ x_0$...$

【Splay】【启发式合并】hdu6133 Army Formations

题意:给你一颗树,每个结点的儿子数不超过2.每个结点有一个权值,一个结点的代价被定义为将其子树中所有结点的权值放入数组排序后,每个权值乘以其下标的和.让你计算所有结点的代价. 二叉树的条件没有用到. 每个结点开一个Splay,从叶子往上启发式合并上去,可以先bfs一遍确定合并顺序.每一次将Splay大小较小的结点的权值全提取出来塞到较大的里面. 由于权值可能重复出现,所以每个结点记个cnt. 答案统计的时候,就将那个刚塞进去的旋到根,然后答案加上左子树的权值和,再加上(右子树的权值的个数+该结点

[UOJ 0034] 多项式乘法

#34. 多项式乘法 统计 描述 提交 自定义测试 这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+1 个整数,分别表示第一个多项式的 00 到 nn 次项前的系数. 第三行 m+1m+1 个整数,分别表示第一个多项式的 00 到 mm 次项前的系数. 输出格式 一行 n+m+1n+m+1 个整数,分别表示乘起来后的多项式的 00 到 n+mn+m 次项前的系数. 样例一 input 1 2 1

【BZOJ2733】永无乡[splay启发式合并or线段树合并]

题目大意:给你一些点,修改是在在两个点之间连一条无向边,查询时求某个点能走到的点中重要度第k大的点.题目中给定的是每个节点的排名,所以实际上是求第k小:题目求的是编号,不是重要度的排名.我一开始差点被这坑了. 网址:http://www.lydsy.com/JudgeOnline/problem.php?id=2733 这道题似乎挺经典的(至少我看许多神犇很早就做了这道题).这道题有两种写法:并查集+(splay启发式合并or线段树合并).我写的是线段树合并,因为--splay不会打+懒得学.

求幂运算、多项式乘法及Horner法则的应用

一,两种不同的求幂运算 求解x^n(x 的 n 次方) ①使用递归,代码如下: 1 private static long pow(int x, int n){ 2 if(n == 0) 3 return 1; 4 if(n == 1) 5 return x; 6 if(n % 2 == 0) 7 return pow(x * x, n / 2); 8 else 9 return pow(x * x, n / 2) * x; 10 } 分析: 每次递归,使得问题的规模减半.2到6行操作的复杂度为