素数的测试:
费尔马小定理:如果p是一个素数,且0<a<p,则a^(p-1)%p=1.
利用费尔马小定理,对于给定的整数n,可以设计素数判定算法,通过 计算d=a^(n-1)%n来判断n的素性,当d!=1时,n肯定不是素数,当d=1时,n 很可能是素数.
二次探测定理:如果n是一个素数,且0<x<p,则方程x^2%p=1的解为:x=1或 x=p-1.
利用二次探测定理,可以再利用费尔马小定理计算a^(n-1)%n的过程 中增加对整数n的二次探测,一旦发现违背二次探测条件,即得出n不是素数的结论.
如果n是素数,则(n-1)必是偶数,因此可令(n-1)=m*(2^q),其中m是正奇数(若n是偶数,则上面的m*(2^q)一定可以分解成一个正奇数乘以2的k次方的形式),q是非负整数,考察下面的测试:
序列:
a^m%n; a^(2m)%n; a^(4m)%n; …… ;a^(m*2^q)%n
把上述测试序列叫做Miller测试,关于Miller测试,有下面的定理:
定理:若n是素数,a是小于n的正整数,则n对以a为基的Miller测试,结果为真.
Miller测试进行k次,将合数当成素数处理的错误概率最多不会超过4^(-k).
参考博客:http://blog.sina.com.cn/s/blog_6f71bea30100okag.html
PS:需要人品啊。
Prime Test
Time Limit: 6000MS | Memory Limit: 65536K | |
Total Submissions: 29406 | Accepted: 7479 | |
Case Time Limit: 4000MS |
Description
Given a big integer number, you are required to find out whether it‘s a prime number.
Input
The first line contains the number of test cases T (1 <= T <= 20 ), then the following T lines each contains an integer number N (2 <= N < 254).
Output
For each test case, if N is a prime number, output a line containing the word "Prime", otherwise, output a line containing the smallest prime factor of N.
Sample Input
2 5 10
Sample Output
Prime 2
#include <algorithm> #include <iostream> #include <stdlib.h> #include <string.h> #include <iomanip> #include <stdio.h> #include <string> #include <queue> #include <cmath> #include <time.h> #include <stack> #include <map> #include <set> #define eps 1e-8 #define M 1000100 ///#define LL long long #define LL __int64 #define INF 0x3f3f3f #define PI 3.1415926535898 #define mod 1000000007 #define MAX (pow(2.0, 60)) #define TIME 12 #define C 240 const int maxn = 110; using namespace std; LL Min; LL gcd(LL x, LL y) { if(y == 0) return x; return gcd(y, x%y); } LL mod_mult(LL a, LL b, LL n) ///计算(a*b) mod n { LL s = 0; a = a % n; while (b) { if (b & 1) { s += a; if (s >= n) s -= n; } a = a << 1; if (a >= n) a -= n; b = b >> 1; } return s; } LL mod_exp(LL a, LL b, LL n) ///计算(a^b) mod n { LL d = 1; a = a % n; while (b >= 1) { if (b & 1) d = mod_mult(d, a, n); a = mod_mult(a, a, n); b = b >> 1; } return d; } bool Wintess(LL a, LL n) ///以a为基对n进行Miller测试并实现二次探测 { LL m, x, y; int i, j = 0; m = n - 1; while (m % 2 == 0) ///计算(n-1)=m*(2^j)中的j和m,j=0时m=n-1,不断的除以2直至n为奇数 { m = m >> 1; j++; } x = mod_exp(a, m, n); for (i = 1; i <= j; i++) { y = mod_exp(x, 2, n); if ((y == 1) && (x != 1) && (x != n - 1)) ///二次探测 return true; ///返回true时,n是合数 x = y; } if (y != 1) return true; return false; } bool miller_rabin(int times,LL n) ///对n进行s次的Miller测试 { LL a; int i; if (n == 1) return false; if (n == 2) return true; if (n % 2 == 0) return false; srand(time(NULL)); for (i = 1; i <= times; i++) { a = rand() % (n - 1) + 1; if (Wintess(a, n)) return false; } return true; } LL Pollard(LL n, int c) ///对n进行因字分解,找出n的一个因子,注意该因子不一定是最小的 { LL i, k, x, y, d; srand(time(NULL)); i = 1; k = 2; x = rand() % n; y = x; while (true) { i++; x = (mod_mult(x, x, n) + c) % n; d = gcd(y - x, n); if (d > 1 && d < n) return d; if (y == x) ///该数已经出现过,直接返回即可 return n; if (i == k) { y = x; k = k << 1; } } } void get_small(LL n, int c) ///找出最小的素数因子 { LL m; if(n == 1) return; if(miller_rabin(TIME, n)) { if(n < Min) Min = n; return; } m = n; ///while(m == n) m = Pollard(n, c--); while (m == n) //找出n的一个因子 m = Pollard(n, c--); get_small(m, c); get_small(n/m, c); } int main() { int T; LL n; cin >>T; while(T--) { scanf("%I64d",&n); Min = MAX; if(miller_rabin(TIME, n)) { puts("Prime"); continue; } get_small(n, C); printf("%I64d\n",Min); } return 0; }