nyoj 311-完全背包 (动态规划, 完全背包)

311-完全背包

内存限制:64MB
时间限制:4000ms
Special Judge: No

accepted:5
submit:7

题目描述:

直接说题意,完全背包定义有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的体积是c,价值是w。求解将哪些物品装入背包可使这些物品的体积总和不超过背包容量,且价值总和最大。本题要求是背包恰好装满背包时,求出最大价值总和是多少。如果不能恰好装满背包,输出NO

输入描述:

第一行: N 表示有多少组测试数据(N<7)。
接下来每组测试数据的第一行有两个整数M,V。 M表示物品种类的数目,V表示背包的总容量。(0<M<=2000,0<V<=50000)
接下来的M行每行有两个整数c,w分别表示每种物品的重量和价值(0<c<100000,0<w<100000)

输出描述:

对应每组测试数据输出结果(如果能恰好装满背包,输出装满背包时背包内物品的最大价值总和。 如果不能恰好装满背包,输出NO)

样例输入:

复制

2
1 5
2 2
2 5
2 2
5 1

样例输出:

NO
1

分析:  1、完全背包问题是指每个元素可以不止选择一次的背包问题  2、它要求所组成的结果必须把背包刚刚填满  3、完全背包 = 初始化为负数 + 0-1背包(PS:判断状态方程对应dp的取值情况应该从小到大)    ①、即就是for(int i = c; i<= V; ++ i) ...

核心代码:  
1 while(m --)
2 {
3     scanf("%d%d", &v, %w);
4     for(int i = v; i <= V; ++ i)
5         dp[i] = max(dp[i], dp[i-v] + w);
6 }

C/C++代码实现(AC):

 1 #include <iostream>
 2 #include <algorithm>
 3 #include <cstring>
 4 #include <cstdio>
 5 #include <cmath>
 6 #include <stack>
 7 #include <map>
 8 #include <queue>
 9 #include <set>
10
11 using namespace std;
12 const int MAXN = 50010;
13 const int MAX = 0x3f3f3f3f;
14
15 int main()
16 {
17
18     int t, M, V, c, w, dp[MAXN];
19     scanf("%d", &t);
20     while(t --)
21     {
22         memset(dp, -MAX, sizeof(dp));
23         dp[0] = 0;
24         scanf("%d%d", &M, &V);
25         while(M --)
26         {
27             scanf("%d%d", &c, &w);
28             for(int i = c; i <= V; ++ i) // 从最小的面积考虑起走
29                 dp[i] = max(dp[i], dp[i-c] + w);
30         }
31         if(dp[V] < 0)
32             printf("NO\n");
33         else
34             printf("%d\n", dp[V]);
35     }
36     return 0;
37 }

原文地址:https://www.cnblogs.com/GetcharZp/p/9102880.html

时间: 2024-10-06 21:01:17

nyoj 311-完全背包 (动态规划, 完全背包)的相关文章

NYOJ 311 完全背包

完全背包 时间限制:3000 ms  |  内存限制:65535 KB 难度:4 描述 直接说题意,完全背包定义有N种物品和一个容量为V的背包,每种物品都有无限件可用.第i种物品的体积是c,价值是w.求解将哪些物品装入背包可使这些物品的体积总和不超过背包容量,且价值总和最大.本题要求是背包恰好装满背包时,求出最大价值总和是多少.如果不能恰好装满背包,输出NO 输入 第一行: N 表示有多少组测试数据(N<7). 接下来每组测试数据的第一行有两个整数M,V. M表示物品种类的数目,V表示背包的总容

题解报告:NYOJ #311完全背包(恰好装满)

描述: 直接说题意,完全背包定义有N种物品和一个容量为V的背包,每种物品都有无限件可用.第i种物品的体积是c,价值是w.求解将哪些物品装入背包可使这些物品的体积总和不超过背包容量,且价值总和最大.本题要求是背包恰好装满背包时,求出最大价值总和是多少.如果不能恰好装满背包,输出NO. 输入: 第一行: N 表示有多少组测试数据(N<7). 接下来每组测试数据的第一行有两个整数M,V. M表示物品种类的数目,V表示背包的总容量.(0<M<=2000,0<V<=50000)接下来的

NYOJ 674 善良的国王(树形背包DP)

善良的国王 时间限制:1000 ms  |  内存限制:65535 KB 难度:4 描述 传说中有一个善良的国王Good,他为了不劳民伤财,每当建造一个城镇的时候都只用一条路去连接,这样就可以省很多的人力和物力,也就说如果有n个城镇,那么只需要n-1条路就可以把所有的城镇链接起来了(也就是一颗树了).但是不幸的事情发生了:有个一强大的帝国想要占领这个国家,但是由于国王Good的兵力不足,只能守护m个城镇,所以经过商量,国王Good只能从他的所有城镇中选择m个相链接的城市,并且把所有可以链接到这m

动态规划(背包题目)

完全背包 hdu 1248 寒冰王座 hdu 1284 钱币兑换问题 hdu 3732 Ahui Writes Word:将01背包转化为多重背包,即完全背包. 0-1背包 hdu 2546 饭卡:因为要占最大的便宜,所以留5元买最贵的菜,因为每种菜只能买一次,用0-1背包 求出买菜用的最大支出 hdu 3466 Proud Merchants:当钱少于Qi时,不将物品卖出,计算过程中要注意方程无后效性,对 Pi-Qi进行排序,小的排在前面.然后用0-1背包解题,其中的约束条件为拥有的钱不少于Q

动态规划/0-1背包

每年毕业的季节都会有大量毕业生发起狂欢,好朋友们相约吃散伙饭,网络上称为"bg".参加不同团体的bg会有不同的感觉,我们可以用一个非负整数为每个bg定义一个"快乐度".现给定一个bg列表,上面列出每个bg的快乐度.持续长度.bg发起人的离校时间,请你安排一系列bg的时间使得自己可以获得最大的快乐度.    例如有4场bg:    第1场快乐度为5,持续1小时,发起人必须在1小时后离开:    第2场快乐度为10,持续2小时,发起人必须在3小时后离开:    第3场快

JZYZOJ1445 [noip2014day1-T3]飞扬的小鸟 动态规划 完全背包

http://172.20.6.3/Problem_Show.asp?id=1445 很容易看出来动态规划的本质,但是之前写的时候被卡了一下(不止一下),还是写一下题解. 直接暴力O(n*m^2)大概是70分,比较划算. 100分需要对上升下降方式找规律然后优化到O(nm): 可以看出,70分算法有很多时间浪费在没必要的上升计算上,为了减少上升计算,我们可以在预处理后把上升计算变为只有一次. 把下降的放在最后处理. 观察可以发现f[i][x]的赋值只可能来自于下面升上来的,其实本质就是一个有一点

有关货币问题的动态规划题目--有关01背包,完全背包,多重背包

背包dp:参考背包九讲以及给出一些题目 01背包 (先枚举物品,再逆序枚举容量) 给定n件物品和一个容量为V的背包,每件物品的体积是w[i],价值是va[i](1<=i<=n),求在不超过背包的容量的情况下,怎么选择装这些物品使得得到的价值最大? 例如:有5件物品,体积分别是{2,2,6,5,4},价值分别是{6,3,5,4,6} 递归式:F(i,v)=max(F(i-1,v), F(i-1,v-w[i])+va[i]),其中F(i,v)表示把前i种物品恰放入背包容量为v时取得的最大价值 把这

完全背包---动态规划

描述 直接说题意,完全背包定义有N种物品和一个容量为V的背包,每种物品都有无限件可用.第i种物品的体积是c,价值是w.求解将哪些物品装入背包可使这些物品的体积总和不超过背包容量,且价值总和最大.本题要求是背包恰好装满背包时,求出最大价值总和是多少.如果不能恰好装满背包,输出NO 输入 第一行: N 表示有多少组测试数据(N<7). 接下来每组测试数据的第一行有两个整数M,V. M表示物品种类的数目,V表示背包的总容量.(0<M<=2000,0<V<=50000) 接下来的M行

【算法学习笔记】30.动态规划 01背包和完全背包的关系

首先先说明一下01背包和完全背包问题的区别 01背包:有 N 件物品和一个容量为 V 的背包.放入第 i 件物品耗费的费用是 Ci,得到的价值是 Wi.求解将哪些物品装入背包可使价值总和最大.(可以不装满) 完全背包:有 N 种物品和一个容量为 V 的背包,每种物品都有无限件可用.放入第 i 种物品 的费用是 Ci,价值是 Wi.求解:将哪些物品装入背包,可使这些物品的耗费的费用总和不超过背包容量,且价值总和最大. 先说结论: 两个问题的最优解都要用DP来解决,实现的过程也非常像只是在内层循环中