稳定婚姻模型

原文地址:https://blog.csdn.net/qq_33913037/article/details/71328099

假如你是一个媒人,有若干个单身男子登门求助,还有同样多的单身女子也前来征婚。如果你已经知道这些女孩在每个男人心目中的排名,以及男孩们在每个女孩心中的排名(1),你应该怎样为他们牵线配对呢? 
最好的配对方案当然是,每个人的另一半正好都是自己的“第一选择”。这虽然很完美,但绝大多数情况下都不可能实现。比方说,男 1 号的最爱是女 1 号,而女 1 号的最爱不是男 1 号,这两个人的最佳选择就不可能被同时满足。如果出现了好几个男人的最爱都是同一个女孩儿的情况,这几个男人的首选也不会同时得到满足。当这种最为理想的配对方案无法实现时,怎样的配对方案才能令人满意呢? 
其实,找的对象太完美不见得是个好事儿,和谐才是婚姻的关键。如果男 1 号和女 1 号各自有各自的对象,但男 1 号觉得,比起自己现在的对象,女 1 号更好一些;女 1 号也发现,在自己心目中,男 1 号的排名比现男友更靠前一些。这样一来,这两人就可能会发生外遇,最后扔下各自现在的对象,一起私奔了——因为这个结果对他们两人都更好一些。在一种男女配对的方案中,如果出现了这种情况,我们就说婚姻搭配是不稳定的。作为一个红娘,你深深地知道,对象介绍得不好没有关系,就怕婚姻关系不稳定。给客户牵线配对时,虽然不能让每个人都得到最合适的,但婚姻搭配必须得是稳定的。换句话说,对于每一个人,在他心目中比他当前的伴侣更好的异性,都不会认为他也是一个更好的选择。现在,我们的问题就是:稳定的婚姻搭配总是存在吗?应该怎样寻找出一个稳定的婚姻搭配?

为了便于分析,我们下面做一些约定。我们用字母 A 、 B 、 C 对男性进行编号,用数字 1 、 2 、 3 对女性进行编号。我们把所有男性从上到下列在左侧,括号里的数字表示每个人心目中对所有女性的排名;再把所有女性列在右侧,用括号里的字母表示她们对男性的偏好。图 0-1 所示的就是有 2 男 2 女的一种情形,每个男的都更喜欢女 1 号,但女 1 号更喜欢男 B ,女 2 号更喜欢男 A 。若按 A-1 、 B-2 进行搭配,则男 B 和女 1 都更喜欢对方一些,这样的婚姻搭配就是不稳定的。但若换一种搭配方案(如图 0-2 ),这样的搭配就是稳定的了。

图 0-1 一个不稳定的婚姻搭配 男 B 和女 1 都不满意现任伴侣

图 0-2 一个稳定的婚姻搭配

可能很多人会立即想到一种寻找稳定婚姻搭配的策略:不断修补当前搭配方案。如果两个人互相之间都觉得对方比自己当前的伴侣更好,就让这两个人成为一对,剩下被甩的那两个人组成一对。如果还有想要私奔的男女对,就继续按照他们的愿望对换情侣,直到最终消除所有的不稳定组合。容易看出,应用这种“修补策略”所得到的最终结果一定满足婚姻的稳定性,但这种策略的问题就在于,它不一定有一个“最终结果”。事实上,按照上述方法反复调整搭配方案,最终有可能会陷入一个死循环,因此该策略甚至不能保证得出一个确定的方案来。

图 0-3 应用“修补策略”可能会产生死循环

1962 年,美国数学家 David Gale 和 Lloyd Shapley 发明了一种寻找稳定婚姻的策略。不管男女各有多少人,不管他们各自的偏好如何,应用这种策略后总能得到一个稳定的婚姻搭配。换句话说,他们证明了稳定的婚姻搭配总是存在的。有趣的是,这种策略反映了现实生活中的很多真实情况。 在这种策略中,男人将一轮一轮地去追求他中意的女子,女子可以选择接受或者拒绝她的追求者。第一轮,每个男人都选择自己名单上排在首位的女人,并向她表白。此时,一个女孩儿可能面对的情况有三种:没有人跟她表白,只有一个人跟她表白,有不止一个人跟她表白。在第一种情况下,这个女孩儿什么都不用做,只需要继续等待;在第二种情况下,接受那个人的表白,答应暂时和他做男女朋友;在第三种情况下,从所有追求者中选择自己最中意的那一位,答应和他暂时做男女朋友,并拒绝其他所有的追求者。 第一轮结束后,有些男人已经有女朋友了,有些男人仍然是单身。在第二轮追女行动中,每个单身男都从所有还没拒绝过他的女孩中选出自己最中意的那一个,并向她表白,不管她现在是否是单身。和第一轮一样,女孩儿们需要从表白者中选择最中意的一位,拒绝其他追求者。注意,如果这个女孩儿已经有男朋友了,当她遇到了更好的追求者时,她必须拒绝掉现在的男友,投向新的追求者的怀抱。这样,一些单身男人将会得到女友,那些已经有了女友的人也可能会被甩掉,重新变成光棍。在以后的每一轮中,单身的男人继续追求列表中的下一个女孩儿,女孩儿则从包括现男友在内的所有追求者中选择最好的一个,并对其他人说不。这样一轮一轮地进行下去,直到某个时候所有人都不再单身,下一轮将不会有任何新的表白发生,整个过程自动结束。此时的婚姻搭配就一定是稳定的了。

 
图 0-4 应用上述策略,三轮之后将得出稳定的婚姻搭配

代码是lrj大白书上的

#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _  ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = 1010, INF = 0x7fffffff;
int pref[maxn][maxn], order[maxn][maxn], next1[maxn];
int future_husband[maxn], future_wife[maxn];
queue<int> q;  //未订婚男士队列

//订婚
void engage(int man, int woman)
{
    int m = future_husband[woman];
    if(m)                           //女士有现任未婚夫m
    {
        future_wife[m] = 0;         //抛弃m
        q.push(m);                  //m加入未订婚男士队列
    }
    future_wife[man] = woman;
    future_husband[woman] = man;
}

int main()
{
    int T;
    scanf("%d", &T);
    while(T--)
    {
        int n;
        scanf("%d", &n);
        for(int i=1; i<=n; i++)
        {
            for(int j=1; j<=n; j++)
                scanf("%d", &pref[i][j]);  //编号为i的男士第j个喜欢的人
            next1[i] = 1;                   //接下来应向排名为1的女士求婚
            future_wife[i] = 0;            //没有未婚妻
            q.push(i);
        }

        for(int i=1; i<=n; i++)
        {
            for(int j=1; j<=n; j++)
            {
                int x;
                scanf("%d", &x);
                order[i][x] = j;           //编号为i的女士心目中,编号为x的男士的排名
            }
            future_husband[i] = 0;          //没有未婚夫
        }
        while(!q.empty())
        {
            int man = q.front(); q.pop();
            int woman = pref[man][next1[man]++]; //下一个求婚对象
            if(!future_husband[woman])             //女士没有未婚夫,直接订婚
                engage(man, woman);
            else if(order[woman][man] < order[woman][future_husband[woman]])
                engage(man, woman);                 //代替女士现任的未婚夫
            else
                q.push(man);                        //直接被拒,下次再来
        }
        while(!q.empty()) q.pop();

        for(int i=1; i<=n; i++) printf("%d\n", future_wife[i]);
        if(T) printf("\n");
    }

    return 0;
}

原文地址:https://www.cnblogs.com/WTSRUVF/p/9431473.html

时间: 2024-11-09 00:30:23

稳定婚姻模型的相关文章

简单的稳定婚姻匹配

一.相关的定义 1.有一个男士集合和一个女士集合.每个男士都有一个优先级列表,把女士按潜在结婚对象进行优先级排序. 同样的,女士也有一个对潜在结婚对象的优先级列表. 婚姻匹配: 一个婚姻匹配M是一个包含n个(m,w)对的集合,每一对的成员都按照一对一的模式从两个不相交的n元素集合Y和X中选出.也就是说,Y中的每个男士m都只和X中的一位女士w配对,反正亦然.相当于一个二分图中,边来连接可能结婚的对象,两边的顶点代表X和Y,婚姻匹配也是图中的一个完美匹配. 婚姻的稳定:如果在匹配M中,,男士m和女士

【bzoj2140】: 稳定婚姻 图论-tarjan

[bzoj2140]: 稳定婚姻 哎..都是模板题.. 一眼看过去 哇 二分图哎 然后发现好像并不能匈牙利算法 自己xjb画两张图,发现二分图左向右连配偶的边,然后右向左连交往过的边 然后如果Bi Gi在同一个强连通分量里面就一定可以在Bi Gi离婚以后再增广一次 最开始用map维护一下名字就好了 1 /* http://www.cnblogs.com/karl07/ */ 2 #include <cstdlib> 3 #include <cstdio> 4 #include &l

uva 1175 Ladies&#39; Choice (稳定婚姻问题)

uva 1175 Ladies' Choice Background Teenagers from the local high school have asked you to help them with the organization of next year?s Prom. The idea is to find a suitable date for everyone in the class in a fair and civilized way. So, they have or

(算法)稳定婚姻匹配

题目: 婚介所登记了N位男孩和N位女孩,每个男孩都对N个女孩的喜欢程度做了排序,每个女孩都对N个男孩的喜欢程度做了排序,你作为月老,能否给出稳定的牵手方案? 稳定的定义:如果男孩i和女孩a牵手,但男孩i对女孩b更喜欢,而女孩b的男朋友j拼不过男孩i,则没有力量阻碍男孩i和女孩b的私奔,这即是不稳定的. 思路: 1962 年,美国数学家 David Gale 和 Lloyd Shapley 发明了一种寻找稳定婚姻的策略.不管男女各有多少人,不管他们各自的偏好如何,应用这种策略后总能得到一个稳定的婚

nyoj 月老的难题 (稳定婚姻问题)

百度了一下稳定婚姻问题.. 还有什么GS算法.. 以为什么高端的东西.. 尼玛结果代码跟上一题一模一样的好吗.. 醉了.. 1 #include<iostream> 2 #include<cstdio> 3 #include<cstdlib> 4 #include<cstring> 5 #include<string> 6 #include<queue> 7 #include<algorithm> 8 #include&l

UVALive 3989Ladies&#39; Choice(稳定婚姻问题)

题目链接 题意:n个男生和女生,先是n行n个数,表示每一个女生对男生的好感值排序,然后是n行n列式每一个男生的好感值排序,输出N行,即每个女生在最好情况下的男生的编号 分析:如果是求女生的最好情况下,就要从女生开始选,这样女生都是从最好的到不好的来选,而男生却相反--只能娶那些自己有可能最没好感的女生,因为男生是被动的,他最喜欢的女生不见的会向他求婚. 刘汝佳书上命名错了,so也跟着把男生当成女生了,懒得改命名了, 1 #include <iostream> 2 #include <cs

poj 3478 The Stable Marriage Problem 稳定婚姻问题

题目给出n个男的和n个女的各自喜欢对方的程度,让你输出一个最佳搭配,使得他们所有人的婚姻都是稳定的. 所谓不稳婚姻是说,比如说有两对夫妇M1,F1和M2,F2,M1的老婆是F1,但他更爱F2;而F2的老公虽说是M2.但她更爱M1,这样的婚姻就是不稳婚姻,M1和F2理应结合,他们现在各自的婚姻都是错误的. 整个算法基于,男性轮流向女性求婚,每次求婚对象都是没有拒绝过自己且自己最喜欢的女性.而女性对于每个求婚者,若她是单身,则接受,否则,就看她更喜欢当前求婚者还是她的未婚夫,选择更好的那个. 这种执

BZOJ 2140 稳定婚姻

题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2140 题意:已知n对夫妻的婚姻状况,称第i对夫 妻的男方为Bi,女方为Gi.若某男Bi与某女Gj曾经交往过,则当某方与其配偶(即Bi与Gi或Bj与Gj)感情出现问题时,Bi与Gj有私奔的可能 性.不妨设Bi和其配偶Gi感情不和,于是Bi和Gj旧情复燃,进而Bj因被戴绿帽而感到不爽,联系上了他的初恋情人Gk……一串串的离婚事件像多米诺骨 牌一般接踵而至.若在Bi和Gi离婚的前提下,这2n

POJ3487[稳定婚姻]

The Stable Marriage Problem Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 2974 Accepted: 1267 Description The stable marriage problem consists of matching members of two different sets according to the member’s preferences for the other