51nod 1202不同子序列个数

题意

求本质不同子序列的数量。

传送门

思路

思路一:\(dp[i] = \sum_{j=last[a[i]]}^{i-1} dp[j]\)

\(dp[i]\) 表示第 i 位数字作为子序列的最后一位的数量。

当\(a[i]\) 未出现过时: \(dp[i]\) 可从之前所有状态包括空串转移过来,即:\(dp[i] = \sum_{j=0}^{i-1}dp[j]\)。

当\(a[i]\) 出现过时:\(dp[i]\) 还是可从之前所有状态转移过来,但是对于\([0,last[a[i]]-1]\) 中的状态会重复计算,所以减去 \(\sum_{j=0}^{last[a[i]]-1} dp[j]\) 。

用前缀和优化一下,复杂度即为\(O(n)\)。

最终状态含空串。

思路二:\(dp[i] = dp[i-1]\times2-dp[last[a[i]]-1]\)

\(dp[i]\) 表示枚举到第 \(i\) 位时所有本质不同子序列的数量,当添加 \(a[i]\) 到所有子序列中时,可选择加或者不加。

当 \(a[i]\) 未出现过时:\(dp[i]\) 相对于\(dp[i-1]\) 多了一倍外,还多一个长度为1的子序列 \(a[i]\),即:\(dp[i] = dp[i-1]\times2+1\)。

当 \(a[i]\) 出现过时:\(dp[i]\) 相对于\(dp[i-1]\) 多了一倍,其中对于\([1, last[a[i]]-1]\) 中的状态会重复计算需要减掉,即:\(dp[i] = dp[i-1]\times2-dp[last[a[i]]-1]\)。

最终状态不含空串。

Code

#include <cstdio>

using namespace std;

const int maxn = 1e5+10;
const int mod = 1e9+7;

int last[maxn];
int dp[maxn], pre[maxn];
int n, a[maxn];

int main() {
    scanf("%d", &n);
    for (int i = 1; i <= n; ++i)
        scanf("%d", a+i);

//    思路一:
//    pre[0] = 1;
//    for (int i = 1; i <= n; ++i) {
//        if(last[a[i]] == 0) dp[i] = pre[i-1];
//        else dp[i] = (pre[i-1]-pre[last[a[i]]-1]+mod)%mod;
//        pre[i] = (pre[i-1] + dp[i]) % mod;
//        last[a[i]] = i;
//    }
//    printf("%d\n", (pre[n]-1+mod)%mod);

//  思路二:
    dp[1] = 1, last[a[1]] = 1;
    for (int i = 2; i <= n; ++i) {
        if(last[a[i]] == 0) dp[i] = (dp[i-1]*2%mod+1)%mod;
        else dp[i] = (dp[i-1]*2%mod-dp[last[a[i]]-1]+mod)%mod;
        last[a[i]] = i;
    }

    printf("%d\n", dp[n]);
    return 0;
}

原文地址:https://www.cnblogs.com/acerkoo/p/11621037.html

时间: 2024-11-13 12:57:19

51nod 1202不同子序列个数的相关文章

51nod 1202 不同子序列个数(计数DP)

1202 子序列个数 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 子序列的定义:对于一个序列a=a[1],a[2],......a[n].则非空序列a'=a[p1],a[p2]......a[pm]为a的一个子序列,其中1<=p1<p2<.....<pm<=n. 例如4,14,2,3和14,1,2,3都为4,13,14,1,2,3的子序列.对于给出序列a,有些子序列可能是相同的,这里只算做1个,请输出a的不同子序列的数量.由于答案比较大,输出Mod 10

51nod 1202不同子序列个数(dp)

子序列的定义:对于一个序列a=a1 1 ,a2 2 ,......an n .则非空序列a'=ap1 p1 ,ap2 p2 ......apm pm 为a的一个子序列,其中1<=p1<p2<.....<pm<=n. 例如4,14,2,3和14,1,2,3都为4,13,14,1,2,3的子序列.对于给出序列a,有些子序列可能是相同的,这里只算做1个,请输出a的不同子序列的数量.由于答案比较大,输出Mod 10^9 + 7的结果即可. Input第1行:一个数N,表示序列的长度(

51nod 1202 子序列个数

1202 子序列个数  题目来源: 福州大学 OJ 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题  收藏  关注 子序列的定义:对于一个序列a=a[1],a[2],......a[n].则非空序列a'=a[p1],a[p2]......a[pm]为a的一个子序列,其中1<=p1<p2<.....<pm<=n. 例如4,14,2,3和14,1,2,3都为4,13,14,1,2,3的子序列.对于给出序列a,有些子序列可能是相同的,这里只算做1

1202 子序列个数

1202 子序列个数 基准时间限制:1 秒 空间限制:131072 KB 子序列的定义:对于一个序列a=a[1],a[2],......a[n].则非空序列a'=a[p1],a[p2]......a[pm]为a的一个子序列,其中1<=p1<p2<.....<pm<=n. 例如4,14,2,3和14,1,2,3都为4,13,14,1,2,3的子序列.对于给出序列a,有些子序列可能是相同的,这里只算做1个,请输出a的不同子序列的数量.由于答案比较大,输出Mod 10^9 + 7的

51nod 1202 线性dp

http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1202 1202 子序列个数 题目来源: 福州大学 OJ 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 收藏 关注 子序列的定义:对于一个序列a=a[1],a[2],......a[n].则非空序列a'=a[p1],a[p2]......a[pm]为a的一个子序列,其中1<=p1<p2<.....<pm<=n. 例

51nod1202 子序列个数

看到a[i]<=100000觉得应该从这个方面搞.如果a[x]没出现过,f[x]=f[x-1]*2;否则f[x]=f[x-1]*2-f[pos[a[x]]-1];ans=f[n]-1,然后WA了 ?修改了一下f[x]=f[x-1]*2+1 否则f[x]=f[x-1]*2-f[pos[a[x]]-1];ans=f[n]; #include<cstdio> #include<cstring> #include<cctype> #include<algorithm

子序列个数(fzu2129)

子序列个数 Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status Practice FZU 2129 Description 子序列的定义:对于一个序列a=a[1],a[2],......a[n].则非空序列a'=a[p1],a[p2]......a[pm]为a的一个子序列,其中1<=p1<p2<.....<pm<=n. 例如4,14,2,3

fzuoj Problem 2129 子序列个数

http://acm.fzu.edu.cn/problem.php?pid=2129 Problem 2129 子序列个数 Accept: 162    Submit: 491Time Limit: 2000 mSec    Memory Limit : 32768 KB  Problem Description 子序列的定义:对于一个序列a=a[1],a[2],......a[n].则非空序列a'=a[p1],a[p2]......a[pm]为a的一个子序列,其中1<=p1<p2<..

FZOJ 2129 子序列个数

OJ题目:click here~~ 题目分析:设dp[ i ] 为前i个数的子序列的个数 , 下标从1开始.计算dp[ i ] .第一种情况, 如果x[ i ] 与前面的数都不相同 , 则 dp[ i ] = dp[ i - 1] + dp[ i - 1] + 1 , 即 = 都把x[ i ] 放在后面 + 都不把x[ i ]放在后面 + x[ i ] 单独成一个序列. 第二种情况,如果x[ i ] 与前面某个相同,则找到下标t , 使得x [ t ] == x[ i ] 且t与i最近.那么dp