深入浅出 Viewport 设计原理

Viewport 是 HTML5 针对移动端开发新增的一个 meta 属性, 它的作用是为同一网页在不同设备的呈现,提供响应式解决方案。这篇文章尝试通过循序渐进的方式,逐层探索 Viewport 的设计原理,希望能给读者带来更加清晰、更加全面的技术认知。

一、引言

在PC时代,我们用 css 设置 1px 边框,显示器会用1个物理像素进行渲染。而进入移动应用时代后,我们原来设置1px边框,在手机上可能需要用 2 个或 3 个物理像素来渲染。

那么,手机为什么要这么做?解决了什么问题?以及我们开发过程中需要做什么?

下面,我们将带着这些问题来一步步探索移动端 Viewport 设计原理,以及如何利用 Viewport 进行移动端适配。

二、基础概念

1、屏幕尺寸

屏幕尺寸指的是手机屏幕对角线的长度,知道了屏幕的宽度(width)和高度(height),对角线就可以通过勾股定理算出:

然后再把这个长度换算成 “英寸(inch)”,就是我们平时所说的手机尺寸。

1 英寸等于 25.4mm,即:

比如 iPhone 常见的尺寸有 3.5寸、4寸、4.7寸、5.5寸 等等。

2、物理像素

我们在手机屏幕上看到的画面,本质上都是由一个个发光的物理像素组成,物理像素是构成屏幕图像的最小单元。

我们常说的屏幕分辨率,就是指这个屏幕上拥有多少个物理像素。

比如: iPhone4 的分辨率是 640 × 960,即屏幕在水平方向上有 640 个像素,在垂直方向上有 960 个像素。

通常,设计师给的 UI 设计稿上的 PX 指的就是物理像素。

3、像素密度 - PPI

PPI(Pixel Per Inch by diagonal):表示对角线上每英寸所拥有的像素个数。

计算PPI,可以简单用勾股定理计算出对角线上的像素,再除以对角线长度:

将 iPhone 4 屏幕数据代入公式,即可得出 iPhone4 的 PPI :

PPI 的值越大,每英寸屏幕上的物理像素点就越多越密集,从而渲染出来的画面也更加细腻、清晰。

比如,iphone3GS 和 iphone4 拥有相同大小的屏幕。但前者的分辨率是 320*480,可以算出PPI为 163,而后者的分辨率是 640*960, 其PPI是326。

这就导致 iphone4 在画面呈现上比 iphone3GS 更加清晰和细腻。

4、PPI 导致的问题

我们先看下面的两张图有什么区别?

     

很明细,左边的图要比右边的看着舒服。

左边的字体大小适中,图片文字都能看的清楚,相比而言,右边的字体就太小了,让用户阅读变得困难。

那么,这个问题是怎么造成的呢?

我们先来做一个对比实验,如下图所示:

左图和右图分别代表两块尺寸相同的屏幕,长度和宽度均为 5cm,屏幕上的每个方格代表一个物理像素点。

唯一不同的是,左边屏幕分辨率为5 × 5,而右边屏幕分辨率为 10 × 10 。

现在屏幕上放了一个按钮,它的 css 样式为:

.button {
  width: 3px;
  height: 1px;
}

从图上的效果可以看出,虽然我们为两个按钮设置了相同的大小,但右屏上的按钮比左屏上的按钮小了很多。

所以我们会发现,相同尺寸的屏幕,像素点越多,每个物理像素点“自身”大小就越小,从而导致渲染出来的图像就会越小。

也就是说,设置相同大小的样式,屏幕的 PPI 越大,渲染出来的图像就越小。

这其实是一个问题。

在移动时代,手机的大小和分辨率参差不齐,从而导致PPI也不尽相同。当我们把一个web页面放到PPI不同的设备上浏览时,就会出现“大小各异”的效果,违背了我们对 css 样式 “所见即所得” 的认知。

为了让同一个元素在所有设备上看起来都差不多大,设备厂商给显示屏幕增加了 “缩放因子”。

5、缩放因子 - DPR

这里的缩放因子并不是对图像本身进行缩放,而是使用更多的像素来渲染同一个元素。

如下图所示,同样大小的矩形,在第一个设备上用过了 8×1 个物理像素来渲染,而在第二个设备上用了 16×2 个物理像素来渲染,在第三个设备上则用了 24×3 个物理像素来渲染。

这样以来,同一个元素在所有设备上的显示效果都一样了!

从图上可以看出,屏幕的PPI越大,缩放因子就越大。如果以第一个屏幕为基准,这三个屏幕的缩放因子分别为: 1、2、3。

通常我们把 “缩放因子” 叫做 DPR。DPR 是 device pixel ratio 的缩写,即设备像素比。

这里需要注意的是:

dpr 的大小并不是通过固定公式计算出来的,而是厂商给屏幕设置的一个固定值,出厂时就确定了,它的大小不会随着程序的设置而改变。

6、DPR 和 PPI 的对应关系

不同平台定义 DPR 的基线 PPI 是不同的。

由于第一代 iPhone 的 PPI 是163,所以苹果把 163 作为缩放基线。

因此,在 iPhone 中, PPI=163 是1x 屏,PPI=326 是 2x 屏。


PPI


163


326


401


458


DPR


1


2


3


3


代表机型


iPhone3GS


iPhone4


iPhone6P


iPhoneX

而 Android 的缩放基线 PPI 是160,所以 PPI=160 是 1x 屏,PPI=320 是 2x 屏。

从图中可以看出:

DPR 的大小和 PPI 正相关,但不成正比,我们无法通过特定的公式来计算它的大小。

7、逻辑像素和逻辑分辨率

对于同一个元素,DPR 越大,屏幕所需要的物理像素就越多,这是我们上面得出的结论。

那么,在软件程序中,元素的大小到底应该写成多少px?

为了解决这个问题,我们引入 “逻辑像素” 的概念,即 css 中写的 px 。

所谓逻辑像素,就是它的大小和物理像素不是一一对应的。

假设,我们现在设置一个元素的css样式如下:

.el {
  width: 8px;
  height: 1px;
}

那么,这个元素在不同屏幕上渲染方式是不同的:

  

在 dpr=1 的屏幕上,1个逻辑像素对应1个物理像素。

在 dpr=2 的屏幕上,1个逻辑像素需要对应2个物理像素,才能保证元素同等大小。

同理,在 dpr=3 的屏幕上,1个逻辑像素对应3个物理像素,才能保证元素同等大小。

因此,我们可以得出一个结论:

一个逻辑像素在不同屏幕上所表示的物理像素数是不同的,它的大小和 dpr 一一对应。

有了这个理论,我们就能推导出屏幕的逻辑分辨率,也就是屏幕的 “逻辑宽度” 和 “逻辑高度”。

比如 iPhone6 的物理分辨率为 750 × 1334,dpr = 2, 带入公式就可以得出其逻辑分辨率:

屏幕的逻辑分辨率也可以通过 DOM API 来获取:

// iPhone6
window.screen.width;// 375px
window.screen.height;// 667px

通常,我们在 CSS 中设置的元素尺寸,本质上都是基于逻辑分辨率进行布局的。

8、iPhone 常见的几种规格


设备


逻辑分辨率(point)


物理分辨率(pixel)


屏幕尺寸


dpr


PPI


iPhone 3GS


320 × 480


320 × 480


3.5寸


1


163


iPhone 4


320 × 480


640 × 960


3.5寸


2


326


iPhone 5


320 × 568


640 × 1136


4.0寸


2


326


iPhone 6


375 × 667


750 × 1334


4.7寸


2


326


iPhone 6 Plus


414 × 736


1080 × 1920


5.5寸


3


401


iPhone X


375 × 812


1125 × 2436


5.8寸


3


458


iPhoneXR


414 × 896


828 × 1792


6.1寸


2


326


iPhoneXS Max


414 × 896


1242 × 2688


6.5寸


3


458

三、Viewport

1、Viewport 到底是什么?

我们在写H5页面的时候,通常会在 html 的 head 中加入下面这句话:

这句话就是在设置页面的 viewport 。那 viewport 到底是什么?为什么要设置它?

简单来说:viewport 是屏幕背后的一张画布。

下面,我们将逐个理解 viewport 中的每个概念。

2、Viewport 画布

浏览器会先把页面内容绘制到画布上,然后再通过屏幕窗口呈现出来。

画布的宽度可大可小, 当画布的宽度大于屏幕宽度时,画布上的内容就无法通过屏幕全部展示出来,用户可以通过屏幕手势来拖动画布查看被遮挡的部分。

如果没有在 html 中加 viewport 的设置,画布其实也是存在的,浏览器会给画布设置一个默认宽度 ,不同平台的默认值如下:

画布的宽度可以通过 DOM API 来获取:

3、device-width 指的是什么?

device-width 指屏幕可视窗口在水平方向上的逻辑像素。

device-width 的大小可以通过 window.screen.width 来获取:

4、width=device-width 在设置谁的宽度?

width 指的是画布的宽度,device-width 是可视窗口宽度。

width=device-width 就是把画布的宽度设置为可视窗口的宽度,让画布上的内容完全呈现出来。

设置了 width=device-width 之后,画布的宽度就和屏幕的宽度一样大了。

5、画布缩放 scale

scale 是指画布以 device-width 大小为基准的缩放值。

initial-scale=1.0 也就相当于设置了 width=device-width

通常需要同时设置这两个值,这是因为两者在不同平台有兼容性问题:

在iPhone 和 iPad 上,只支持 inital-scale=1 的设置,而在 IE 只支持 width=device-width ,所以两者同时设置,可以兼容所有的平台。

6、动态缩放机制

在没有给页面设置 viewport 的情况下,当画布宽度大于可视窗口的时候,浏览器会自动对画布进行缩放,以适配可视窗口大小。这样页面在不滚动的情况下也能呈现全部内容。

下面这个页面是PC端页面,没有做移动端适配,可以看出网页的内容依然可以完全呈现出来,这是因为没有设置 viewport 而触发了 画布的动态缩放机制。

通过 DOM API 能计算出浏览器确实对画布进行了缩放:

需要注意的是:

当没有设置 viewport 或者 设置了viewport 但没有设置 scale 的时候,才会触发浏览器动态缩放机制。

7、禁止动态缩放

给页面添加 viewport 设置,如下所示:

由于手动设置了 scale 的值,没有触发自动缩放机制,浏览器直接把宽度为 980px 的画布原封不动的展示出来了:

这种情况下需要通过滚动才能查看画布全部内容。

8、三个 Viewport

通常,我们把画布称为 layout viewport, 把屏幕可视窗口称为 visual viewport

而把设置 width=device-width 的画布称为 ideal viewport,即“理想视口”。

我们通常在 html 中设置 viewport 就是为了得到理想视口,方便用户阅览。

四、响应式布局方案

响应式布局的目标是:用同一套代码适配所有的设备。

常用的布局方案有以下几种:

  • 百分比
  • vw
  • Css Media Query
  • rem
  • flex box

下面是手淘团队移动端适配的协作模式:

设计师一般会把 iPhone6(750px) 作为设计稿,设计稿中的元素也都是基于750px进行标注的,当然这里的 px 指的是物理像素。

开发拿到设计稿后,根据iPhone6的 dpr 把标注中的元素大小换算成 css 中的大小,比如设计稿中按钮的宽度标注为40px, 则 css 中应该写成40/2=20px

然后再根据屏幕的逻辑宽度进行同步缩放(如:rem/vw 方案),就可以实现向上或向下适配所有设备。

五、总结

最后,我们再回顾一下开篇提到的问题,其实不难理解,这是由于屏幕的 dpr 不同导致的。

一般情况下,PC 屏幕 dpr 是 1,即 1个逻辑像素 = 1个物理像素,而移动端的 dpr 通常都是 2 或 3,因此也就需要 2个或 3个物理像素来渲染。

这也是 “移动端1px边框” 的经典问题,理解了 viewport,这个问题就不难解决了。

原创发布  @一像素   2020.01.03

原文地址:https://www.cnblogs.com/onepixel/p/12144364.html

时间: 2024-10-03 18:42:00

深入浅出 Viewport 设计原理的相关文章

kafka入门:简介、使用场景、设计原理、主要配置及集群搭建(转)

问题导读: 1.zookeeper在kafka的作用是什么? 2.kafka中几乎不允许对消息进行"随机读写"的原因是什么? 3.kafka集群consumer和producer状态信息是如何保存的? 4.partitions设计的目的的根本原因是什么? 一.入门 1.简介 Kafka is a distributed,partitioned,replicated commit logservice.它提供了类似于JMS的特性,但是在设计实现上完全不同,此外它并不是JMS规范的实现.k

Atitit.ioc 动态配置文件guice 设计原理

Atitit.ioc 动态配置文件guice 设计原理 1. Bat启动时注入配置文件1 2. ioc调用1 3. Ioc 分发器 配合 apche  MethodUtils.invokeStaticMethod2 1. Bat启动时注入配置文件 SET JAVA_HOME=C:\Program Files\Java\jdk1.8.0_71 set  RESIN-HOME=c:\resin-4.0.22 set classpath=%classpath%;%RESIN-HOME%\lib\jas

BigPipe设计原理

高性能页面加载技术--BigPipe设计原理及Java简单实现 1.技术背景 动态web网站的历史可以追溯到万维网初期,相比于静态网站,动态网站提供了强大的可交互功能.经过几十年的发展,动态网站在互动性和页面显示效果上有了很大的提升,但是对于网站动态网站的整体页面加载架构没有做太大的改变.对于用户而言,页面的加载速度极大的影响着用户体验感.与静态网站不同,除了页面的传输加载时间外,动态网站还需考虑服务端数据的处理时间.像facebook这样大型的用户社交网站,必须考虑用户访问速度问题, 传统we

Atitit.异常的设计原理与 策略处理 java 最佳实践 p93

Atitit.异常的设计原理与 策略处理 java 最佳实践 p93 1 异常方面的使用准则,答案是::2 1.1 普通项目优先使用异常取代返回值,如果开发类库方面的项目,最好异常机制与返回值都提供,由调用者决定使用哪种方式..2 1.2 优先把异常抛出到上层处理..异常本身就是为了方便把异常情况抛出到上层处理..2 1.3 对于 HYPERLINK \l _Toc6222 方法调用结果异常情况返回策略,最终会有四种策略状况,2 1.4 返回null  还是异常??2 2 异常的由来与设计3 2

Atitit ati licenseService    设计原理

Atitit ati licenseService    设计原理 C:\0workspace\AtiPlatf\src_atibrow\com\attilax\license\LicenseX.java V1 更具时间超是 V2   按照时间慢的百分率.. V3 草案.. Laicense file ,hto sh aes time.. Invoke System.out.println( licenseX.isCanUse_byUsePercent("2016-05-01") );

以属性为核心驱动的 全领域通用架构设计原理 (简称:属性架构原理)

以属性为核心驱动的全领域通用架构设计原理 (简称:属性架构原理) 联系方式:13547930387 Email:[email protected] 一.个人声明 我,参加工作也有5年多了,是一名普通的不能在普通的程序员,一直在使用公司自己的产品进行开发,因此技术比较菜,此设计完全是按照自己天真的想法而设计的,如果有不合理或很搞笑的地方,请轻拍,由衷的希望大家能提出宝贵的意见: 根据此设计原理我也做了一个简单的(demo)架构来支撑和验证此理论的可行性,由于技术功底不太好,有不合理之处请大家谅解,

深入理解kafka设计原理

最近开研究kafka,下面分享一下kafka的设计原理.kafka的设计初衷是希望作为一个统一的信息收集平台,能够实时的收集反馈信息,并需要能够支撑较大的数据量,且具备良好的容错能力. 1.持久性 kafka使用文件存储消息,这就直接决定kafka在性能上严重依赖文件系统的本身特性.且无论任何OS下,对文件系统本身的优化几乎没有可能.文件缓存/直接内存映射等是常用的手段.因为kafka是对日志文件进行append操作,因此磁盘检索的开支是较小的;同时为了减少磁盘写入的次数,broker会将消息暂

BeanFactory容器的设计原理

XmlBeanFactory设计的类继承关系 1.BeanFactory接口提供了使用IoC容器的规范.在这个基础上,Spring还提供了符合这个IoC容器接口的一系列容器的实现供开发人员使用. 2.我们以XmlBeanFactory的实现为例来说明简单IoC容器的设计原理. 3.可以看到,作为一个简单IoC容器系列最底层实现的XmlBeanFactory,与我们在Spring应用中用到的上下文相比,有一个非常明显的特点:它只提供最基本的IoC容器的功能. 4.理解这一点有助于我们理解Appli

Scala函数式编程设计原理 第一课 编程范式(Programming Paradigms)

我使用Scala有一两年的时间了,这门语言仿佛有一种魔力,让人用过就不想放手.Scala给我的整个程序生涯带来了非常深刻的影响,让我学会了函数式编程,让我知道了世界上居然还有这么一种优雅.高效.强大的语言. Scala在国外已经非常流行,但是不知为何,在国内总是不温不火,在此,我特别想为Scala这门语言在国内的发展做一些事情.不才不敢谈Scala的编程经验,因为要成为Scala大神还有很长的路要走,只好翻译一份Scala视频教程以飨读者,大家发现有误的地方,请多多批评指教. 这个视频的作者是S