机器学习-SVM-手写识别问题

机器学习-SVM-手写识别问题

这里我们解决的还是之前用KNN曾经解决过的手写识别问题(https://www.cnblogs.com/jiading/p/11622019.html),但相比于KNN,SVM好的地方在于一旦我们的模型训练完成,我们就可以得到一个确定的决策超平面,当然这个超平面的w是用所有的支持向量来描述的,这就表示我们发布模型的时候只需要包括所有的支持向量在内就可以了,剩下所有的向量都可以舍弃,和每次都需要所有向量的KNN相比,这就大大减小了模型的大小。

注意,这里举的是一个二分类的例子,如果多分类的话需要其他的构造,有三种构造思路,看这里:https://www.cnblogs.com/cheesezh/p/5265959.html

'''
Created on Nov 4, 2010
Chapter 5 source file for Machine Learing in Action
@author: Peter
'''
from numpy import *
from time import sleep
def selectJrand(i,m):#在某个区间范围内随机选择一个整数
    #i为第一个alhpa的下表,m是所有alpha的数目
    j=i #we want to select any J not equal to i
    while (j==i):
        j = int(random.uniform(0,m))
    return j

def clipAlpha(aj,H,L):#在数值太大的时候对其进行调整
    #aj是H是下限,是L的上限
    if aj > H:
        aj = H
    if L > aj:
        aj = L
    return aj
def kernelTrans(X, A, kTup): #calc the kernel or transform data to a higher dimensional space
    #X是数据,A是
    m,n = shape(X)
    K = mat(zeros((m,1)))
    #这里为了简单,我们只内置了两种核函数,但是原理是一样的,需要的话再写其他类型就是了
    #线性核函数:k(x,x_i)=x*x_i,它不需要再传入参数,这个其实就是我们之前用的那种,dataMatrix*dataMatrix[j,:].T
    if kTup[0]=='lin': K = X * A.T   #linear kernel,线性核函数
    elif kTup[0]=='rbf':#高斯核函数,传入的参数作为detla
        for j in range(m):
            deltaRow = X[j,:] - A
            K[j] = deltaRow*deltaRow.T#2范数
        K = exp(K/(-1*kTup[1]**2)) #divide in NumPy is element-wise not matrix like Matlab
        #numpy中,/表示对矩阵元素进行计算而不是计算逆(MATLAB)
    else: raise NameError('Houston We Have a Problem --     That Kernel is not recognized')#2333老师玩梗
    return K
#定义了一个类来进行SMO算法
class optStruct:
    def __init__(self,dataMatIn, classLabels, C, toler, kTup):  # Initialize the structure with the parameters
        #kTup储存核函数信息,它是一个元组,元组第一个元素是一个描述核函数类型的字符串,其他两个元素是核函数可能需要的参数
        self.X = dataMatIn
        self.labelMat = classLabels
        self.C = C
        self.tol = toler
        self.m = shape(dataMatIn)[0]#m是样本个数,也是a的个数
        self.alphas = mat(zeros((self.m,1)))#初始化a序列,都设置为0
        self.b = 0
        #第一列给出的是eCache是否有效的标志位,而第二位是实际的E值
        self.eCache = mat(zeros((self.m,2))) #first column is valid flag
        #如果第一位是1,说明现在的这个Ek是有效的
        self.K = mat(zeros((self.m,self.m)))#使用核函数计算后的数据,就是内积矩阵,方便直接调用内积结果
        for i in range(self.m):
            self.K[:,i] = kernelTrans(self.X, self.X[i,:], kTup)

def calcEk(oS, k):#计算第k个样本的Ek
    fXk = float(multiply(oS.alphas,oS.labelMat).T*oS.K[:,k] + oS.b)
    Ek = fXk - float(oS.labelMat[k])
    return Ek

def selectJ(i, oS, Ei):         #this is the second choice -heurstic, and calcs Ej
    #选定了a_1之后选择a_2
    #选择a_2
    maxK = -1; maxDeltaE = 0; Ej = 0#选择|E1-E2|最大的E2并返回E2和j
    #先将E1存进去,以便于之后的统一化进行
    oS.eCache[i] = [1,Ei]  #set valid #choose the alpha that gives the maximum delta E
    '''
    numpy函数返回非零元素的目录。
    返回值为元组, 两个值分别为两个维度, 包含了相应维度上非零元素的目录值。
    可以通过a[nonzero(a)]来获得所有非零值。
    .A的意思是:getArray(),也就是将矩阵转换为数组
    '''
        #获取哪些样本的Ek是有效的,ValidEcacheList里面存的是所有有效的样本行Index
    validEcacheList = nonzero(oS.eCache[:,0].A)[0]
    #对每一个有效的Ecache都比较一遍
    if (len(validEcacheList)) > 1:
        for k in validEcacheList:   #loop through valid Ecache values and find the one that maximizes delta E
            if k == i: continue #don't calc for i, waste of time
                #如果选到了和a1一样的,就继续,因为a1和a2必须选不一样的样本
            Ek = calcEk(oS, k)
            deltaE = abs(Ei - Ek)
            if (deltaE > maxDeltaE):
                maxK = k; maxDeltaE = deltaE; Ej = Ek
        return maxK, Ej
    else:   #in this case (first time around) we don't have any valid eCache values
        j = selectJrand(i, oS.m)
        Ej = calcEk(oS, j)
    return j, Ej
def updateEk(oS, k):#after any alpha has changed update the new value in the cache
    Ek = calcEk(oS, k)
    oS.eCache[k] = [1,Ek]
    #计算Ek并保存在类oS中
#内循环寻找合适的a_2
def innerL(i, oS):
    Ei = calcEk(oS, i)#为什么这里要重新算呢?因为a_1刚刚更新了,和存储的不一样
    if ((oS.labelMat[i]*Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i]*Ei > oS.tol) and (oS.alphas[i] > 0)):
        #如果a1选的合适的话,不合适就直接结束了
        #剩下的逻辑都一样,只不过不是使用x_ix_j,而是使用核函数
        j,Ej = selectJ(i, oS, Ei) #this has been changed from selectJrand
        alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy();
        if (oS.labelMat[i] != oS.labelMat[j]):
            L = max(0, oS.alphas[j] - oS.alphas[i])
            H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])
        else:
            L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)
            H = min(oS.C, oS.alphas[j] + oS.alphas[i])
        if L==H: print ("L==H"); return 0
        eta = 2.0 * oS.K[i,j] - oS.K[i,i] - oS.K[j,j] #changed for kernel
        if eta >= 0: print ("eta>=0"); return 0
        oS.alphas[j] -= oS.labelMat[j]*(Ei - Ej)/eta
        oS.alphas[j] = clipAlpha(oS.alphas[j],H,L)
        updateEk(oS, j) #added this for the Ecache
        if (abs(oS.alphas[j] - alphaJold) < 0.00001): print ("j not moving enough"); return 0
        oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])#update i by the same amount as j
        updateEk(oS, i) #added this for the Ecache                    #the update is in the oppostie direction
        b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,i] - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[i,j]
        b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,j]- oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[j,j]
        if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1
        elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2
        else: oS.b = (b1 + b2)/2.0
        return 1
    else: return 0

def smoP(dataMatIn, classLabels, C, toler, maxIter,kTup=('lin', 0)):#默认核函数是线性,参数为0(那就是它本身了)
    #这个kTup先不管,之后用
    oS = optStruct(mat(dataMatIn),mat(classLabels).transpose(),C,toler, kTup)#初始化这一结构
    iter = 0
    #entireSet是控制开关,一次循环对所有样本点都遍历,第二次就只遍历非边界点
    entireSet = True; alphaPairsChanged = 0
    while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):
        alphaPairsChanged = 0
        if entireSet:   #go over all
            for i in range(oS.m):
                alph aPairsChanged += innerL(i,oS)
                print ("fullSet, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged))
            iter += 1
        else:#go over non-bound (railed) alphas
            #把大于0且小于C的a_i挑出来,这些是非边界点,只从这些点上遍历
            nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]
            for i in nonBoundIs:
                alphaPairsChanged += innerL(i,oS)
                print ("non-bound, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged))
            iter += 1
        #如果第一次是对所有点进行的,那么第二次就只对非边界点进行
        if entireSet: entireSet = False #toggle entire set loop
        #如果对非边界点进行后没有,就在整个样本上进行
        '''
        首先在非边界集上选择能够使函数值足够下降的样本作为第二个变量,
        如果非边界集上没有,则在整个样本集上选择第二个变量,
        如果整个样本集依然不存在,则重新选择第一个变量。
        '''
        elif (alphaPairsChanged == 0): entireSet = True
        print ("iteration number: %d" % iter)
    return oS.b,oS.alphas
#利用SVM进行分类,返回的是函数间隔,大于0属于1类,小于0属于2类。
def calcWs(alphas,dataArr,classLabels):
    X = mat(dataArr); labelMat = mat(classLabels).transpose()
    m,n = shape(X)
    w = zeros((n,1))
    for i in range(m):
        w += multiply(alphas[i]*labelMat[i],X[i,:].T)
    return w
#将图像转换为向量
def img2vector(filename):
    #一共有1024个特征
    returnVect = zeros((1,1024))
    fr = open(filename)
    for i in range(32):
        lineStr = fr.readline()
        for j in range(32):
            returnVect[0,32*i+j] = int(lineStr[j])
    return returnVect

def loadImages(dirName):
    from os import listdir
    hwLabels = []
    #利用listdir读文件名,这里的label写在了文件名里面
    trainingFileList = listdir(dirName)           #load the training set
    m = len(trainingFileList)
    trainingMat = zeros((m,1024))
    for i in range(m):
        fileNameStr = trainingFileList[i]
        fileStr = fileNameStr.split('.')[0]     #take off .txt
        classNumStr = int(fileStr.split('_')[0])
        if classNumStr == 9: hwLabels.append(-1)
        else: hwLabels.append(1)
        trainingMat[i,:] = img2vector('%s/%s' % (dirName, fileNameStr))
    return trainingMat, hwLabels
#手写识别问题
def testDigits(kTup=('rbf', 10)):
    dataArr,labelArr = loadImages('trainingDigits')
    b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, kTup)
    datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
    svInd=nonzero(alphas.A>0)[0]
    sVs=datMat[svInd]
    labelSV = labelMat[svInd];
    print ("there are %d Support Vectors" % shape(sVs)[0])
    m,n = shape(datMat)
    errorCount = 0
    for i in range(m):
        kernelEval = kernelTrans(sVs,datMat[i,:],kTup)
        predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
        if sign(predict)!=sign(labelArr[i]): errorCount += 1
    print ("the training error rate is: %f" % (float(errorCount)/m))
    dataArr,labelArr = loadImages('testDigits')
    errorCount = 0
    datMat=mat(dataArr); labelMat = mat(labelArr).transpose()
    m,n = shape(datMat)
    for i in range(m):
        kernelEval = kernelTrans(sVs,datMat[i,:],kTup)
        predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b
        if sign(predict)!=sign(labelArr[i]): errorCount += 1
    print ("the test error rate is: %f" % (float(errorCount)/m) )

原文地址:https://www.cnblogs.com/jiading/p/11698315.html

时间: 2024-10-22 00:41:10

机器学习-SVM-手写识别问题的相关文章

机器学习与数据挖掘-logistic回归及手写识别实例的实现

本文主要介绍logistic回归相关知识点和一个手写识别的例子实现 一.logistic回归介绍: logistic回归算法很简单,这里简单介绍一下: 1.和线性回归做一个简单的对比 下图就是一个简单的线性回归实例,简单一点就是一个线性方程表示 (就是用来描述自变量和因变量已经偏差的方程) 2.logistic回归 可以看到下图,很难找到一条线性方程能将他们很好的分开.这里也需要用到logistic回归来处理了. logistic回归本质上是线性回归,只是在特征到结果的映射中加入了一层函数映射,

【机器学习算法实现】kNN算法__手写识别——基于Python和NumPy函数库

[机器学习算法实现]系列文章将记录个人阅读机器学习论文.书籍过程中所碰到的算法,每篇文章描述一个具体的算法.算法的编程实现.算法的具体应用实例.争取每个算法都用多种语言编程实现.所有代码共享至github:https://github.com/wepe/MachineLearning-Demo     欢迎交流指正! (1)kNN算法_手写识别实例--基于Python和NumPy函数库 1.kNN算法简介 kNN算法,即K最近邻(k-NearestNeighbor)分类算法,是最简单的机器学习算

机器学习实战笔记——基于KNN算法的手写识别系统

本文主要利用k-近邻分类器实现手写识别系统,训练数据集大约2000个样本,每个数字大约有200个样本,每个样本保存在一个txt文件中,手写体图像本身是32X32的二值图像,如下图所示: 首先,我们需要将图像格式化处理为一个向量,把一个32X32的二进制图像矩阵通过img2vector()函数转换为1X1024的向量: def img2vector(filename): returnVect = zeros((1,1024)) fr = open(filename) for i in range(

logistic回归与手写识别例子的实现

本文主要介绍logistic回归相关知识点和一个手写识别的例子实现 一.logistic回归介绍: logistic回归算法很简单,这里简单介绍一下: 1.和线性回归做一个简单的对比 下图就是一个简单的线性回归实例,简单一点就是一个线性方程表示 (就是用来描述自变量和因变量已经偏差的方程) 2.logistic回归 可以看到下图,很难找到一条线性方程能将他们很好的分开.这里也需要用到logistic回归来处理了. logistic回归本质上是线性回归,只是在特征到结果的映射中加入了一层函数映射,

tensorflow笔记(四)之MNIST手写识别系列一

tensorflow笔记(四)之MNIST手写识别系列一 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7436310.html 前言 这篇博客将利用神经网络去训练MNIST数据集,通过学习到的模型去分类手写数字. 我会将本篇博客的jupyter notebook放在最后,方便你下载在线调试!推荐结合官方的tensorflow教程来看这个notebook! 1. MNIST数据集的导入 这里介绍一下MNIST,MNIST是在

Tensorflow快餐教程(1) - 30行代码搞定手写识别

去年买了几本讲tensorflow的书,结果今年看的时候发现有些样例代码所用的API已经过时了.看来自己维护一个保持更新的Tensorflow的教程还是有意义的.这是写这一系列的初心. 快餐教程系列希望能够尽可能降低门槛,少讲,讲透. 为了让大家在一开始就看到一个美好的场景,而不是停留在漫长的基础知识积累上,参考网上的一些教程,我们直接一开始就直接展示用tensorflow实现MNIST手写识别的例子.然后基础知识我们再慢慢讲. Tensorflow安装速成教程 由于Python是跨平台的语言,

win10下通过Anaconda安装TensorFlow-GPU1.3版本,并配置pycharm运行Mnist手写识别程序

折腾了一天半终于装好了win10下的TensorFlow-GPU版,在这里做个记录. 准备安装包: visual studio 2015: Anaconda3-4.2.0-Windows-x86_64: pycharm-community: CUDA:cuda_8.0.61_win10:下载时选择 exe(local) CUDA补丁:cuda_8.0.61.2_windows: cuDNN:cudnn-8.0-windows10-x64-v6.0;如果你安装的TensorFlow版本和我一样1.

Python 基于KNN算法的手写识别系统

本文主要利用k-近邻分类器实现手写识别系统,训练数据集大约2000个样本,每个数字大约有200个样本,每个样本保存在一个txt文件中,手写体图像本身是32X32的二值图像,如下图所示: 手写数字识别系统的测试代码: from numpy import * import operator from os import listdir #inX    要检测的数据 #dataSet   数据集 #labels    结果集 #k      要对比的长度 def classify0(inX, data

77、tensorflow手写识别基础版本

''' Created on 2017年4月20日 @author: weizhen ''' #手写识别 from tensorflow.examples.tutorials.mnist import input_data mnist=input_data.read_data_sets("/path/to/MNIST_data/",one_hot=True) batch_size=100 xs,ys = mnist.train.next_batch(batch_size) #从trai

TensorFlow 入门之手写识别(MNIST) softmax算法

TensorFlow 入门之手写识别(MNIST) softmax算法 MNIST 卢富毓 softmax回归 softmax回归算法 TensorFlow实现softmax softmax回归算法 我们知道MNIST的每一张图片都表示一个数字,从0到9.我们希望得到给定图片代表每个数字的概率.比如说,我们的模型可能推测一张包含9的图片代表数字9的概率是80%但是判断它是8的概率是5%(因为8和9都有上半部分的小圆),然后给予它代表其他数字的概率更小的值. 这是一个使用softmax回归(sof