Callable接口类似于Runnable,从名字就可以看出来了,但是Runnable不会返回结果,并且无法抛出返回结果的异常,而Callable功能更强大一些,被线程执行后,可以返回值,这个返回值可以被Future拿到。FutureTask实现了两个接口,Runnable和Future,所以它既可以作为Runnable被线程执行,又可以作为Future得到Callable的返回值,那么这个组合的使用有什么好处呢?假设有一个很耗时的返回值需要计算,并且这个返回值不是立刻需要的话,那么就可以使用这个组合,用另一个线程去计算返回值,而当前线程在使用这个返回值之前可以做其它的操作,等到需要这个返回值时,再通过Future得到。
Future特性
需要明确一点:java.util.concurrent.Future 是一个异步回调接口。
Future接口源码
/* * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. * */ /* * * Written by Doug Lea with assistance from members of JCP JSR-166 * Expert Group and released to the public domain, as explained at * http://creativecommons.org/publicdomain/zero/1.0/ */ package java.util.concurrent; /** * A <tt>Future</tt> represents the result of an asynchronous * computation. Methods are provided to check if the computation is * complete, to wait for its completion, and to retrieve the result of * the computation. The result can only be retrieved using method * <tt>get</tt> when the computation has completed, blocking if * necessary until it is ready. Cancellation is performed by the * <tt>cancel</tt> method. Additional methods are provided to * determine if the task completed normally or was cancelled. Once a * computation has completed, the computation cannot be cancelled. * If you would like to use a <tt>Future</tt> for the sake * of cancellability but not provide a usable result, you can * declare types of the form {@code Future<?>} and * return <tt>null</tt> as a result of the underlying task. * * <p> * <b>Sample Usage</b> (Note that the following classes are all * made-up.) <p> * <pre> {@code * interface ArchiveSearcher { String search(String target); } * class App { * ExecutorService executor = ... * ArchiveSearcher searcher = ... * void showSearch(final String target) * throws InterruptedException { * Future<String> future * = executor.submit(new Callable<String>() { * public String call() { * return searcher.search(target); * }}); * displayOtherThings(); // do other things while searching * try { * displayText(future.get()); // use future * } catch (ExecutionException ex) { cleanup(); return; } * } * }}</pre> * * The {@link FutureTask} class is an implementation of <tt>Future</tt> that * implements <tt>Runnable</tt>, and so may be executed by an <tt>Executor</tt>. * For example, the above construction with <tt>submit</tt> could be replaced by: * <pre> {@code * FutureTask<String> future = * new FutureTask<String>(new Callable<String>() { * public String call() { * return searcher.search(target); * }}); * executor.execute(future);}</pre> * * <p>Memory consistency effects: Actions taken by the asynchronous computation * <a href="package-summary.html#MemoryVisibility"> <i>happen-before</i></a> * actions following the corresponding {@code Future.get()} in another thread. * * @see FutureTask * @see Executor * @since 1.5 * @author Doug Lea * @param <V> The result type returned by this Future‘s <tt>get</tt> method */ public interface Future<V> { /** * Attempts to cancel execution of this task. This attempt will * fail if the task has already completed, has already been cancelled, * or could not be cancelled for some other reason. If successful, * and this task has not started when <tt>cancel</tt> is called, * this task should never run. If the task has already started, * then the <tt>mayInterruptIfRunning</tt> parameter determines * whether the thread executing this task should be interrupted in * an attempt to stop the task. * * <p>After this method returns, subsequent calls to {@link #isDone} will * always return <tt>true</tt>. Subsequent calls to {@link #isCancelled} * will always return <tt>true</tt> if this method returned <tt>true</tt>. * * @param mayInterruptIfRunning <tt>true</tt> if the thread executing this * task should be interrupted; otherwise, in-progress tasks are allowed * to complete * @return <tt>false</tt> if the task could not be cancelled, * typically because it has already completed normally; * <tt>true</tt> otherwise */ boolean cancel(boolean mayInterruptIfRunning); /** * Returns <tt>true</tt> if this task was cancelled before it completed * normally. * * @return <tt>true</tt> if this task was cancelled before it completed */ boolean isCancelled(); /** * Returns <tt>true</tt> if this task completed. * * Completion may be due to normal termination, an exception, or * cancellation -- in all of these cases, this method will return * <tt>true</tt>. * * @return <tt>true</tt> if this task completed */ boolean isDone(); /** * Waits if necessary for the computation to complete, and then * retrieves its result. * * @return the computed result * @throws CancellationException if the computation was cancelled * @throws ExecutionException if the computation threw an * exception * @throws InterruptedException if the current thread was interrupted * while waiting */ V get() throws InterruptedException, ExecutionException; /** * Waits if necessary for at most the given time for the computation * to complete, and then retrieves its result, if available. * * @param timeout the maximum time to wait * @param unit the time unit of the timeout argument * @return the computed result * @throws CancellationException if the computation was cancelled * @throws ExecutionException if the computation threw an * exception * @throws InterruptedException if the current thread was interrupted * while waiting * @throws TimeoutException if the wait timed out */ V get(long timeout, TimeUnit unit) throws InterruptedException, ExecutionException, TimeoutException; }
Callable返回Future示例
import java.util.concurrent.Callable; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; import java.util.concurrent.Future; import java.util.concurrent.TimeUnit; /** * Callable的Future用法 * @package .CallableDemo * @date 2017年4月5日 下午2:53:18 * @author pengjunlin * @comment * @update */ public class CallableFuture { /** * @param args * @throws Exception * @throws InterruptedException */ public static void main(String[] args) throws InterruptedException, Exception { // TODO Auto-generated method stub ExecutorService exec = Executors.newCachedThreadPool(); // Future是一个接口,该接口用来返回异步的结果。 Future<String> st = exec.submit(new TaskCallable()); /* 同步结果,并且设置超时时间 */ System.out.println(st.get(10000, TimeUnit.MILLISECONDS)); System.out.println("finished"); } } class TaskCallable implements Callable<String> { public String call() throws Exception { // TODO Auto-generated method stub Thread.sleep(1000); return "callstatus=OK"; } }
FutureTask
FutureTask实现了java.util.concurrent.RunnableFuture<V>接口,实际上实现了Runnable和 Future<V>两个接口。
FutureTask源码
/* * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. * * */ /* * * Written by Doug Lea with assistance from members of JCP JSR-166 * Expert Group and released to the public domain, as explained at * http://creativecommons.org/publicdomain/zero/1.0/ */ package java.util.concurrent; import java.util.concurrent.locks.LockSupport; /** * A cancellable asynchronous computation. This class provides a base * implementation of {@link Future}, with methods to start and cancel * a computation, query to see if the computation is complete, and * retrieve the result of the computation. The result can only be * retrieved when the computation has completed; the {@code get} * methods will block if the computation has not yet completed. Once * the computation has completed, the computation cannot be restarted * or cancelled (unless the computation is invoked using * {@link #runAndReset}). * * <p>A {@code FutureTask} can be used to wrap a {@link Callable} or * {@link Runnable} object. Because {@code FutureTask} implements * {@code Runnable}, a {@code FutureTask} can be submitted to an * {@link Executor} for execution. * * <p>In addition to serving as a standalone class, this class provides * {@code protected} functionality that may be useful when creating * customized task classes. * * @since 1.5 * @author Doug Lea * @param <V> The result type returned by this FutureTask‘s {@code get} methods */ public class FutureTask<V> implements RunnableFuture<V> { /* * Revision notes: This differs from previous versions of this * class that relied on AbstractQueuedSynchronizer, mainly to * avoid surprising users about retaining interrupt status during * cancellation races. Sync control in the current design relies * on a "state" field updated via CAS to track completion, along * with a simple Treiber stack to hold waiting threads. * * Style note: As usual, we bypass overhead of using * AtomicXFieldUpdaters and instead directly use Unsafe intrinsics. */ /** * The run state of this task, initially NEW. The run state * transitions to a terminal state only in methods set, * setException, and cancel. During completion, state may take on * transient values of COMPLETING (while outcome is being set) or * INTERRUPTING (only while interrupting the runner to satisfy a * cancel(true)). Transitions from these intermediate to final * states use cheaper ordered/lazy writes because values are unique * and cannot be further modified. * * Possible state transitions: * NEW -> COMPLETING -> NORMAL * NEW -> COMPLETING -> EXCEPTIONAL * NEW -> CANCELLED * NEW -> INTERRUPTING -> INTERRUPTED */ private volatile int state; private static final int NEW = 0; private static final int COMPLETING = 1; private static final int NORMAL = 2; private static final int EXCEPTIONAL = 3; private static final int CANCELLED = 4; private static final int INTERRUPTING = 5; private static final int INTERRUPTED = 6; /** The underlying callable; nulled out after running */ private Callable<V> callable; /** The result to return or exception to throw from get() */ private Object outcome; // non-volatile, protected by state reads/writes /** The thread running the callable; CASed during run() */ private volatile Thread runner; /** Treiber stack of waiting threads */ private volatile WaitNode waiters; /** * Returns result or throws exception for completed task. * * @param s completed state value */ @SuppressWarnings("unchecked") private V report(int s) throws ExecutionException { Object x = outcome; if (s == NORMAL) return (V)x; if (s >= CANCELLED) throw new CancellationException(); throw new ExecutionException((Throwable)x); } /** * Creates a {@code FutureTask} that will, upon running, execute the * given {@code Callable}. * * @param callable the callable task * @throws NullPointerException if the callable is null */ public FutureTask(Callable<V> callable) { if (callable == null) throw new NullPointerException(); this.callable = callable; this.state = NEW; // ensure visibility of callable } /** * Creates a {@code FutureTask} that will, upon running, execute the * given {@code Runnable}, and arrange that {@code get} will return the * given result on successful completion. * * @param runnable the runnable task * @param result the result to return on successful completion. If * you don‘t need a particular result, consider using * constructions of the form: * {@code Future<?> f = new FutureTask<Void>(runnable, null)} * @throws NullPointerException if the runnable is null */ public FutureTask(Runnable runnable, V result) { this.callable = Executors.callable(runnable, result); this.state = NEW; // ensure visibility of callable } public boolean isCancelled() { return state >= CANCELLED; } public boolean isDone() { return state != NEW; } public boolean cancel(boolean mayInterruptIfRunning) { if (state != NEW) return false; if (mayInterruptIfRunning) { if (!UNSAFE.compareAndSwapInt(this, stateOffset, NEW, INTERRUPTING)) return false; Thread t = runner; if (t != null) t.interrupt(); UNSAFE.putOrderedInt(this, stateOffset, INTERRUPTED); // final state } else if (!UNSAFE.compareAndSwapInt(this, stateOffset, NEW, CANCELLED)) return false; finishCompletion(); return true; } /** * @throws CancellationException {@inheritDoc} */ public V get() throws InterruptedException, ExecutionException { int s = state; if (s <= COMPLETING) s = awaitDone(false, 0L); return report(s); } /** * @throws CancellationException {@inheritDoc} */ public V get(long timeout, TimeUnit unit) throws InterruptedException, ExecutionException, TimeoutException { if (unit == null) throw new NullPointerException(); int s = state; if (s <= COMPLETING && (s = awaitDone(true, unit.toNanos(timeout))) <= COMPLETING) throw new TimeoutException(); return report(s); } /** * Protected method invoked when this task transitions to state * {@code isDone} (whether normally or via cancellation). The * default implementation does nothing. Subclasses may override * this method to invoke completion callbacks or perform * bookkeeping. Note that you can query status inside the * implementation of this method to determine whether this task * has been cancelled. */ protected void done() { } /** * Sets the result of this future to the given value unless * this future has already been set or has been cancelled. * * <p>This method is invoked internally by the {@link #run} method * upon successful completion of the computation. * * @param v the value */ protected void set(V v) { if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) { outcome = v; UNSAFE.putOrderedInt(this, stateOffset, NORMAL); // final state finishCompletion(); } } /** * Causes this future to report an {@link ExecutionException} * with the given throwable as its cause, unless this future has * already been set or has been cancelled. * * <p>This method is invoked internally by the {@link #run} method * upon failure of the computation. * * @param t the cause of failure */ protected void setException(Throwable t) { if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) { outcome = t; UNSAFE.putOrderedInt(this, stateOffset, EXCEPTIONAL); // final state finishCompletion(); } } public void run() { if (state != NEW || !UNSAFE.compareAndSwapObject(this, runnerOffset, null, Thread.currentThread())) return; try { Callable<V> c = callable; if (c != null && state == NEW) { V result; boolean ran; try { result = c.call(); ran = true; } catch (Throwable ex) { result = null; ran = false; setException(ex); } if (ran) set(result); } } finally { // runner must be non-null until state is settled to // prevent concurrent calls to run() runner = null; // state must be re-read after nulling runner to prevent // leaked interrupts int s = state; if (s >= INTERRUPTING) handlePossibleCancellationInterrupt(s); } } /** * Executes the computation without setting its result, and then * resets this future to initial state, failing to do so if the * computation encounters an exception or is cancelled. This is * designed for use with tasks that intrinsically execute more * than once. * * @return true if successfully run and reset */ protected boolean runAndReset() { if (state != NEW || !UNSAFE.compareAndSwapObject(this, runnerOffset, null, Thread.currentThread())) return false; boolean ran = false; int s = state; try { Callable<V> c = callable; if (c != null && s == NEW) { try { c.call(); // don‘t set result ran = true; } catch (Throwable ex) { setException(ex); } } } finally { // runner must be non-null until state is settled to // prevent concurrent calls to run() runner = null; // state must be re-read after nulling runner to prevent // leaked interrupts s = state; if (s >= INTERRUPTING) handlePossibleCancellationInterrupt(s); } return ran && s == NEW; } /** * Ensures that any interrupt from a possible cancel(true) is only * delivered to a task while in run or runAndReset. */ private void handlePossibleCancellationInterrupt(int s) { // It is possible for our interrupter to stall before getting a // chance to interrupt us. Let‘s spin-wait patiently. if (s == INTERRUPTING) while (state == INTERRUPTING) Thread.yield(); // wait out pending interrupt // assert state == INTERRUPTED; // We want to clear any interrupt we may have received from // cancel(true). However, it is permissible to use interrupts // as an independent mechanism for a task to communicate with // its caller, and there is no way to clear only the // cancellation interrupt. // // Thread.interrupted(); } /** * Simple linked list nodes to record waiting threads in a Treiber * stack. See other classes such as Phaser and SynchronousQueue * for more detailed explanation. */ static final class WaitNode { volatile Thread thread; volatile WaitNode next; WaitNode() { thread = Thread.currentThread(); } } /** * Removes and signals all waiting threads, invokes done(), and * nulls out callable. */ private void finishCompletion() { // assert state > COMPLETING; for (WaitNode q; (q = waiters) != null;) { if (UNSAFE.compareAndSwapObject(this, waitersOffset, q, null)) { for (;;) { Thread t = q.thread; if (t != null) { q.thread = null; LockSupport.unpark(t); } WaitNode next = q.next; if (next == null) break; q.next = null; // unlink to help gc q = next; } break; } } done(); callable = null; // to reduce footprint } /** * Awaits completion or aborts on interrupt or timeout. * * @param timed true if use timed waits * @param nanos time to wait, if timed * @return state upon completion */ private int awaitDone(boolean timed, long nanos) throws InterruptedException { final long deadline = timed ? System.nanoTime() + nanos : 0L; WaitNode q = null; boolean queued = false; for (;;) { if (Thread.interrupted()) { removeWaiter(q); throw new InterruptedException(); } int s = state; if (s > COMPLETING) { if (q != null) q.thread = null; return s; } else if (s == COMPLETING) // cannot time out yet Thread.yield(); else if (q == null) q = new WaitNode(); else if (!queued) queued = UNSAFE.compareAndSwapObject(this, waitersOffset, q.next = waiters, q); else if (timed) { nanos = deadline - System.nanoTime(); if (nanos <= 0L) { removeWaiter(q); return state; } LockSupport.parkNanos(this, nanos); } else LockSupport.park(this); } } /** * Tries to unlink a timed-out or interrupted wait node to avoid * accumulating garbage. Internal nodes are simply unspliced * without CAS since it is harmless if they are traversed anyway * by releasers. To avoid effects of unsplicing from already * removed nodes, the list is retraversed in case of an apparent * race. This is slow when there are a lot of nodes, but we don‘t * expect lists to be long enough to outweigh higher-overhead * schemes. */ private void removeWaiter(WaitNode node) { if (node != null) { node.thread = null; retry: for (;;) { // restart on removeWaiter race for (WaitNode pred = null, q = waiters, s; q != null; q = s) { s = q.next; if (q.thread != null) pred = q; else if (pred != null) { pred.next = s; if (pred.thread == null) // check for race continue retry; } else if (!UNSAFE.compareAndSwapObject(this, waitersOffset, q, s)) continue retry; } break; } } } // Unsafe mechanics private static final sun.misc.Unsafe UNSAFE; private static final long stateOffset; private static final long runnerOffset; private static final long waitersOffset; static { try { UNSAFE = sun.misc.Unsafe.getUnsafe(); Class<?> k = FutureTask.class; stateOffset = UNSAFE.objectFieldOffset (k.getDeclaredField("state")); runnerOffset = UNSAFE.objectFieldOffset (k.getDeclaredField("runner")); waitersOffset = UNSAFE.objectFieldOffset (k.getDeclaredField("waiters")); } catch (Exception e) { throw new Error(e); } } }
Callable返回FutureTask示例
import java.util.ArrayList; import java.util.List; import java.util.concurrent.Callable; import java.util.concurrent.ExecutionException; import java.util.concurrent.FutureTask; /** * Callable的MyFutureTask用法 * * @package .MyFutureTask * @date 2017年4月5日 下午2:56:50 * @author pengjunlin * @comment * @update */ public class MyFutureTask { public static void main(String[] args) { Callable<int[]> primeCallable = new PrimeCallable(1000); FutureTask<int[]> primeTask = new FutureTask<int[]>(primeCallable); Thread t = new Thread(primeTask); t.start(); try { // 假设现在做其他事情 Thread.sleep(5000); // 回来看看质数找好了吗 if (primeTask.isDone()) { int[] primes = primeTask.get(); for (int prime : primes) { System.out.print(prime + " "); } System.out.println(); } } catch (InterruptedException e) { e.printStackTrace(); } catch (ExecutionException e) { e.printStackTrace(); } } } class PrimeCallable implements Callable<int[]> { private int max; public PrimeCallable(int max) { this.max = max; } public int[] call() throws Exception { int[] prime = new int[max + 1]; List<Integer> list = new ArrayList<Integer>(); for (int i = 2; i <= max; i++) prime[i] = 1; for (int i = 2; i * i <= max; i++) { // 这里可以改进 if (prime[i] == 1) { for (int j = 2 * i; j <= max; j++) { if (j % i == 0) prime[j] = 0; } } } for (int i = 2; i < max; i++) { if (prime[i] == 1) { list.add(i); } } int[] p = new int[list.size()]; for (int i = 0; i < p.length; i++) { p[i] = list.get(i).intValue(); } return p; } }
时间: 2024-11-05 21:59:25