浮点数二进制表示

在讨论浮点数之前,先看一下整数在计算机内部是怎样表示的。

  int num=9;

上面这条命令,声明了一个整数变量,类型为int,值为9(二进制写法为1001)。普通的32位计算机,用4个字节表示int变量,所以9就被保存为00000000 00000000 00000000 00001001,写成16进制就是0x00000009。

那么,我们的问题就简化成:为什么0x00000009还原成浮点数,就成了0.000000?

下面一步一步的揭晓答案。

先来看一个公式,计算浮点数的公式:

根据国际标准IEEE 754,任意一个二进制浮点数V可以表示成下面的形式:

  

  (1)(-1)^s表示符号位,当s=0,V为正数;当s=1,V为负数。

  (2)M表示有效数字,大于等于1,小于2。

  (3)2^E表示指数位。

举例来说,十进制的5.0,写成二进制是101.0,相当于1.01×2^2。那么,按照上面V的格式,可以得出s=0,M=1.01,E=2。

十进制的-5.0,写成二进制是-101.0,相当于-1.01×2^2。那么,s=1,M=1.01,E=2。

IEEE 754规定,对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M。

对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M。

IEEE 754对有效数字M和指数E,还有一些特别规定。

前面说过,1≤M<2,也就是说,M可以写成1.xxxxxx的形式,其中xxxxxx表示小数部分。IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。

至于指数E,情况就比较复杂。

首先,E为一个无符号整数(unsigned int)。这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,E的真实值必须再减去一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。

比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。

然后,指数E还可以再分成三种情况:

(1)E不全为0或不全为1。这时,浮点数就采用上面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第一位的1。

(2)E全为0。这时,浮点数的指数E等于1-127(或者1-1023),有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字。

(3)E全为1。这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s);如果有效数字M不全为0,表示这个数不是一个数(NaN)。

下面,让我们回到一开始的问题:为什么0x00000009还原成浮点数,就成了0.000000?

首先,将0x00000009拆分,得到第一位符号位s=0,后面8位的指数E=00000000,最后23位的有效数字M=000 0000 0000 0000 0000 1001。

由于指数E全为0,所以符合上一节的第二种情况。因此,浮点数V就写成:

  V=(-1)^0×0.00000000000000000001001×2^(-126)=1.001×2^(-146)

显然,V是一个很小的接近于0的正数,所以用十进制小数表示就是0.000000。

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

  • 看了这篇文章才对浮点数的二进制表示有所了解,不过我的目的不是为了软考。
  • C/C++编译器都是按照IEEE的浮点数表示法,即一种科学计数法 ,用符号,指数和尾数来表示,底数为2,也就是把浮点数表示为尾数乘以2的指数次方再添加上符号的形式。因为科学技术法 a×bm的形式,a介于1~10,而浮点数表示法中,a始终为1,所以在最终的表示结果中,这个1被略去。 

    具体规格是:

      符号位 阶码 尾数 总长度
    float 1 8 23 32
    double 1 11 52 64
  • 下面通过例子来解释上面的表示规格:
    • 38414.4表示为double:

      • 分开整数和小数部分,整数化为16进制,0x960E;小数部分为:0.4=0.5×0+0.25×1+0.125×1+……+0.5×(1 or 0)/n+……。

        有的小数可以穷尽,有的是永远不会穷尽的,此时只需要提取出各项的系数,即011……,这些项的和加上整数部分共53位就可以了。正如上面所言的,最高为不变的1可以省略,最终是53-1=52位。

        38414.4可以表示为b1001011000001110.0110011001100110011001100110011001100。

        用科学计数法表示为1.0010110000011100110011001100110011001100110011001100×215

      • 然后计算阶码,阶码共11位,可以表示-1024~1023,因为指数可以为负数,为了方便表示,先加上1023变为非负数,上面的15表示为15+1023=103,二进制为10000001110。符号位,0为正,1为负。所以最终结果是 

        0 10000001110 0010110000011100110011001100110011001100110011001100

        颜色与上表对应。

    • 3490593表示为float:

      3490593的浮点数为3490593.0。

      • 整数化为二进制,为b1101010100001100100001,即1.101010100001100100001×221,由于float的尾数有23位,需要补0,即1.10101010000110010000100×221
      • 计算阶码时,类似double的表示,阶码共8位,表示的范围是-128~127,为了方便,加上127,上面的21表示为21+127=148=b10010100。 

        最终结果是:

        0 10010100 10101010000110010000100

        颜色与上表对应。

    • 0.5的二进制表示: 

      上面给出了0.4的二进制表示的计算方法:

      0.4=0.5×0+0.25×1+0.125×1+……+0.5×(1 or 0)/n+……。

      它是无穷尽的,知道精度合适了为止。然而对于有的数来说,是有穷的,比如

      0.5=1×0.5。

      • 整数部分为0,小数部分为0.1,所以0.5的二进制形式是0.1,即1.0 × 2-1
      • 计算阶码时,用127+(-1)=126=b1111110。 

        所以最终结果是:

        0 01111110 00000000000000000000000

        颜色与上表对应。

    • -12.5的二进制浮点表示:
      • 整数部分为12,即b1100;小数部分为0.5,即b0.1,即1100.10000000000000000000,即1.10010000000000000000000 × 23
      • 计算阶码,3+127=130,即b10000010,所以最终结果是: 

        1 10000010 10010000000000000000000

        颜色与上表对应。

    • 逆向求取,1011 1101 0100 0000 0000 0000 0000 0000转为十进制:
      • 1011 1101 0100 0000 0000 0000 0000 0000为:

        1 01111010 10000000000000000000000

        所以该数为-1.10000000000000000000000 × 201111010-127=-5=-b0.000011=0.046875

  • 有关浮点数和double的精度(http://www.learncpp.com/cpp-tutorial/25-floating-point-numbers/):

    Variables of type float typically have a precision of about 7 significant digits (which is why everything after that many digits in our answer above is junk).
    Variables of type double typically have a precision of about 16 significant digits. Variables of type double are named so because they offer approximately double the precision of a float.

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

1.

前几天,我在读一本C语言教材,有一道例题:

  #include <stdio.h>

  void main(void){

    int num=9; /* num是整型变量,设为9 */

    float* pFloat=&num; /* pFloat表示num的内存地址,但是设为浮点数 */

    printf("num的值为:%d\n",num); /* 显示num的整型值 */

    printf("*pFloat的值为:%f\n",*pFloat); /* 显示num的浮点值 */

    *pFloat=9.0; /* 将num的值改为浮点数 */

    printf("num的值为:%d\n",num); /* 显示num的整型值 */

    printf("*pFloat的值为:%f\n",*pFloat); /* 显示num的浮点值 */

  }

运行结果如下:

  num的值为:9

  *pFloat的值为:0.000000

  num的值为:1091567616

  *pFloat的值为:9.000000

我很惊讶,num和*pFloat在内存中明明是同一个数,为什么浮点数和整数的解读结果会差别这么大?

要理解这个结果,一定要搞懂浮点数在计算机内部的表示方法。我读了一些资料,下面就是我的笔记。

2.

在讨论浮点数之前,先看一下整数在计算机内部是怎样表示的。

  int num=9;

上面这条命令,声明了一个整数变量,类型为int,值为9(二进制写法为1001)。普通的32位计算机,用4个字节表示int变量,所以9就被保存为00000000 00000000 00000000 00001001,写成16进制就是0x00000009。

那么,我们的问题就简化成:为什么0x00000009还原成浮点数,就成了0.000000?

3.

根据国际标准IEEE 754,任意一个二进制浮点数V可以表示成下面的形式:

  

  (1)(-1)^s表示符号位,当s=0,V为正数;当s=1,V为负数。

  (2)M表示有效数字,大于等于1,小于2。

  (3)2^E表示指数位。

举例来说,十进制的5.0,写成二进制是101.0,相当于1.01×2^2。那么,按照上面V的格式,可以得出s=0,M=1.01,E=2。

十进制的-5.0,写成二进制是-101.0,相当于-1.01×2^2。那么,s=1,M=1.01,E=2。

IEEE 754规定,对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M。

对于64位的浮点数,最高的1位是符号位S,接着的11位是指数E,剩下的52位为有效数字M。

5.

IEEE 754对有效数字M和指数E,还有一些特别规定。

前面说过,1≤M<2,也就是说,M可以写成1.xxxxxx的形式,其中xxxxxx表示小数部分。IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。

至于指数E,情况就比较复杂。

首先,E为一个无符号整数(unsigned int)。这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,E的真实值必须再减去一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。

比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。

然后,指数E还可以再分成三种情况:

(1)E不全为0或不全为1。这时,浮点数就采用上面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第一位的1。

(2)E全为0。这时,浮点数的指数E等于1-127(或者1-1023),有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字。

(3)E全为1。这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s);如果有效数字M不全为0,表示这个数不是一个数(NaN)。

6.

好了,关于浮点数的表示规则,就说到这里。

下面,让我们回到一开始的问题:为什么0x00000009还原成浮点数,就成了0.000000?

首先,将0x00000009拆分,得到第一位符号位s=0,后面8位的指数E=00000000,最后23位的有效数字M=000 0000 0000 0000 0000 1001。

由于指数E全为0,所以符合上一节的第二种情况。因此,浮点数V就写成:

  V=(-1)^0×0.00000000000000000001001×2^(-126)=1.001×2^(-146)

显然,V是一个很小的接近于0的正数,所以用十进制小数表示就是0.000000。

7.

再看例题的第二部分。

请问浮点数9.0,如何用二进制表示?还原成十进制又是多少?

首先,浮点数9.0等于二进制的1001.0,即1.001×2^3。

那么,第一位的符号位s=0,有效数字M等于001后面再加20个0,凑满23位,指数E等于3+127=130,即10000010。

所以,写成二进制形式,应该是s+E+M,即0 10000010 001 0000 0000 0000 0000 0000。这个32位的二进制数,还原成十进制,正是1091567616。

(完)

时间: 2024-08-19 03:36:54

浮点数二进制表示的相关文章

32位浮点数二进制转换为int32

//first High second Lowvoid process32BitConvertToDouble6Bit(float source,uint16_t &first,uint16_t &second){ uint32_t v_tmp; qDebug() << v_tmp; v_tmp = *(int *)&source; uint16_t firstTemp=v_tmp >> 16;; uint16_t secondTemp=v_tmp &

Java中的简单浮点数类型float和double不能够进行精确运算

在java中,简单的浮点类型float和double是不能够进行运算.我们先看下面的两个程序代码: 代码一: import java.util.Scanner; class Circle { double radius; static final double PI=3.14; public Circle(){this.radius=0;} public Circle(double r){this.radius=r;} public double getArea(){return PI*this

Java浮点数float和double精确计算的精度误差问题总结

1.float整数计算误差 案例:会员积分字段采用float类型,导致计算会员积分时,7位整数的数据计算结果出现误差. 原因:超出float精度范围,无法精确计算. float和double的精度是由尾数的位数来决定的.浮点数在内存中是按科学计数法来存储的,其整数部分始终是一个隐含着的“1”,由于它是不变的,故不能对精度造成影响. float:2^23 = 8388608,一共七位,这意味着最多能有7位有效数字,但绝对能保证的为6位,也即float的精度为6~7位有效数字: double:2^5

浮点数剖析

IEEE 754[编辑] 维基百科,自由的百科全书 IEEE二进制浮点数算术标准(IEEE 754)是1980年代以来最广泛使用的浮点数运算标准,为许多CPU与浮点运算器所采用.这个标准定义了表示浮点数的格式(包括负零-0)与反常值(denormal number)),一些特殊数值(无穷(Inf)与非数值(NaN)),以及这些数值的"浮点数运算符":它也指明了四种数值舍入规则和五种例外状况(包括例外发生的时机与处理方式). IEEE 754规定了四种表示浮点数值的方式:单精确度(32位

浮点数的数据结构

周末在家,重新学习了一下以前不太懂的知识点.浮点数和数据结构. 1 什么是浮点数? 通俗来说带有小数点的数都是浮点数.比如1.1,121.212,-1.11,-222.111 2 在JAVA中常用表示浮点数的类型是什么?区别是什么? 在JAVA中,通常使用的浮点数的类型为 FLoat和Double,他们的区别在于大小与储存方式不同 public class App { public static void main(String[] args) { System.out.println("Flo

IEEE 754 浮点数在计算机中的表示方法

IEEE二进制浮点数算术标准(IEEE 754)是20世纪80年代以来最广泛使用的浮点数运算标准,为许多CPU与浮点运算器所采用.这个标准定义了表示浮点数的格式(包括负零-0)与反常值(denormal number)),一些特殊数值(无穷(Inf)与非数值(NaN)),以及这些数值的“浮点数运算符”:它也指明了四种数值舍入规则和五种例外状况(包括例外发生的时机与处理方式). IEEE 754规定了四种表示浮点数值的方式:单精确度(32位).双精确度(64位).延伸单精确度(43比特以上,很少使

javascript的优美与鸡肋

--总结来自:<javascript语言精粹> 任何语言都有其优美的地方和其鸡肋的地方.避归一些语言的糟粕,能相应的降低bug出现的几率. 优美处: 函数是头等对象 基于原型继承的动态对象 对象字面量和数组字面量 糟粕: 1. 全局变量 全局变量有三种表达方式: var声明:var foo = value; 添加属性到全局对象上,即添加到window上:window.foo = value; 未经声明的变量:foo = value; 虽然变量可以未经声明就使用,但是这会导致后期的很多的bug出

Java中浮点型数据Float和Double进行精确计算的问题

一.浮点计算中发生精度丢失  大概很多有编程经验的朋友都对这个问题不陌生了:无论你使用的是什么编程语言,在使用浮点型数据进行精确计算时,你都有可能遇到计算结果出错的情况.来看下面的例子. // 这是一个利用浮点型数据进行精确计算时结果出错的例子,使用Java编写,有所省略. double a = (1.2 - 0.4) / 0.1;System.out.println(a); 如果你认为这个程序的输出结果是“8”的话,那你就错了.实际上,程序的输出结果是“7.999999999999999”.好

CSAPP 3e : Data lab

/* * CS:APP Data Lab * * <Please put your name and userid here> * * bits.c - Source file with your solutions to the Lab. * This is the file you will hand in to your instructor. * * WARNING: Do not include the <stdio.h> header; it confuses the