内核调试神器SystemTap — 更多功能与原理(三)

a linux trace/probe tool.

官网:https://sourceware.org/systemtap/

用户空间

SystemTap探测用户空间程序需要utrace的支持,3.5以上的内核版本默认支持。

对于3.5以下的内核版本,需要自己打相关补丁。

更多信息:http://sourceware.org/systemtap/wiki/utrace

需要:

debugging information for the named program

utrace support in the kernel

(1) Begin/end

探测点:

进程/线程创建时

进程/线程结束时

process.begin

process("PATH").begin

process(PID).begin

process.thread.begin

process("PATH").thread.begin

process(PID).thread.begin

process.end

process("PATH").end

process(PID).end

process.thread.end

process("PATH").thread.end

process(PID).thread.end

(2) Syscall

探测点:

系统调用开始

系统调用返回

process.syscall

process("PATH").syscall

process(PID).syscall

process.syscall.return

process("PATH").syscall.return

process(PID).syscall.return

可用的进程上下文变量:

$syscall // 系统调用号

$argN ($arg1~$arg6) // 系统调用参数

$return // 系统调用返回值

(3) Function/statement

探测点:

函数入口处

函数返回处

文件中某行

函数中的某个标签

process("PATH").function("NAME")

process("PATH").statement("*@FILE.c:123")

process("PATH").function("*").return

process("PATH").function("myfunc").label("foo")

(4) Absolute variant

探测点:

进程的虚拟地址

process(PID).statement(ADDRESS).absolute

A non-symbolic probe point uses raw, unverified virtual addresses and provide no $variables.

The target PID parameter must identify a running process and ADDRESS must identify a valid instruction address.

This is a guru mode probe.

(5) Target process

探测点:

动态链接库中的函数(比如glibc)

Target process mode (invoked with stap -c CMD or -x PID) implicitly restricts all process.* probes to the given child

process.

If PATH names a shared library, all processes map that shared library can be probed.

If dwarf debugging information is installed, try using a command with this syntax:

probe process("/lib64/libc-2.8.so").function("...") { ... }

(6) Instruction probes

探测点:

单条指令

指令块

process("PATH").insn

process(PID).insn

process("PATH").insn.block

process(PID).insn.block

The .insn probe is called for every single-stepped instruction of the process described by PID or PATH.

The .insn.block probe is called for every block-stepped instruction of the process described by PID or PATH.

Using this feature will significantly slow process execution.

统计一个进程执行了多少条指令:

stap -e ‘global steps; probe process("/bin/ls").insn {steps++}; probe end {printf("Total instruction: %d\n", steps)}‘ \

-c /bin/ls

(7) 使用

gcc -g3 -o test test.c

stap -L ‘process("./test").function("*")‘ // 显示程序中的函数和变量

调试等级:

Request debugging information and also use level to specify how much information. The default level is 2.

Level 0 produces no debug information at all. Thus, -g0 negates -g.

Level 1 produces minimal information, enough for making backtraces in parts of the program that you don‘t

plan to debug. This includes descriptions of functions and external variables, but no information about local

variables and no line numbers.

Level 3: includes extra information, such as all the macro definitions present in the program.

高级功能

(1) 自建脚本库

A tapset is just a script that designed for reuse by installation into a special directory.

Systemtap attempts to resolve references to global symbols (probes, functions, variables) that are not defined

within the script by a systematic search through the tapset library for scripts that define those symbols.

A user may give additional directories with the -I DIR option.

构建自己的库:

1. 创建库目录mylib,添加两个库文件

time-default.stp

function __time_value() {
	return gettimeofday_us()
}

time-common.stp

global __time_vars

function timer_begin(name) {
	__time_vars[name] = __time_value()
}

function timer_end(name) {
	return __time_value() - __time_vars[name]
}

2. 编写应用脚本

tapset-time-user.stp

probe begin {
	timer_begin("bench")
	for(i=0; i<1000; i++) ;
	printf("%d cycles\n", timer_end("bench"))
	exit()
}

3. 执行

stap -I mylib/ tapset-time-user.stp

(2) 探测点重命名

主要用于在探测点之上提供一个抽象层。

Probe point aliases allow creation of new probe points from existing ones.

This is useful if the new probe points are named to provide a higher level of abstraction.

格式:

probe new_name = existing_name1, existing_name2[, ..., existing_nameN]

{

prepending behavior

}

实例:

probe syscallgroup.io = syscall.open, syscall.close,
	  	     syscall.read, syscall.write
{
	groupname = "io"
}

probe syscallgroup.process = syscall.fork, syscall.execve
{
	groupname = "process"
}

probe syscallgroup.*
{
	groups[execname() . "/" . groupname]++
}

global groups

probe end
{
	foreach (eg in groups+)
		printf("%s: %d\n", eg, groups[eg])
}

(3) 嵌入C代码

SystemTap provides an "escape hatch" to go beyond what the language can safely offer.

嵌入的C代码段用%{和%}括起来,执行脚本时要加-g选项。

提供一个THIS宏,可以用于获取函数参数和保存函数返回值。

实例:

%{
#include <linux/sched.h>
#include <linux/list.h>
%}

function process_list()
%{
	struct task_struct *p;
	struct list_head *_p, *_n;

	printk("%-20s%-10s\n", "program", "pid");

	list_for_each_safe(_p, _n, &current->tasks) {
		p = list_entry(_p, struct task_struct, tasks);
		printk("%-20s%-10d\n", p->comm, p->pid);
	}
%}

probe begin {
	process_list()
	exit()
}

stap -g embeded-c.stp

dmesg可看到打印出的所有进程。

(4) 已有脚本库

SystemTap默认提供了非常强大的脚本库,主要类别如下:

Context Functions

Timestamp Functions

Time utility functions

Shell command functions

Memory Tapset

Task Time Tapset

Secheduler Tapset

IO Scheduler and block IO Tapset

SCSI Tapset

TTY Tapset

Interrupt Request (IRQ) Tapset

Networking Tapset

Socket Tapset

SNMP Information Tapset

Kernel Process Tapset

Signal Tapset

Errno Tapset

Device Tapset

Directory-entry (dentry) Tapset

Logging Tapset

Queue Statistics Tapset

Random functions Tapset

String and data retrieving functions Tapset

String and data writing functions Tapset

Guru tapsets

A collection of standard string functions

Utility functions for using ansi control chars in logs

SystemTap Translator Tapset

Network File Storage Tapsets

Speculation

实现原理

(1) SystemTap脚本的执行流程

pass1

During the parsing of the code, it is represented internally in a parse tree.

Preprocessing is performed during this step, and the code is checked for semantic and syntax errors.

pass2

During the elaboration step, the symbols and references in the SystemTap script are resolved.

Also, any tapsets that are referenced in the SystemTap script are imported.

Debug data that is read from the DWARF(a widely used, standardized debugging data format) information,

which is produced during kernel compilation, is used to find the addresses for functions and variables

referenced in the script, and allows probes to be placed inside functions.

pass3

Takes the output from the elaboration phase and converts it into C source code.

Variables used by multiple probes are protected by locks. Safety checks, and any necessary locking, are

handled during the translation. The code is also converted to use the Kprobes API for inserting probe points

into the kernel.

pass4

Once the SystemTap script has been translated into a C source file, the code is compiled into a module that

can be dynamically loaded and executed in the kernel.

pass5

Once the module is built, SystemTap loads the module into the kernel.

When the module loads, an init routine in the module starts running and begins inserting probes into their

proper locations. Hitting a probe causes execution to stop while the handler for that probe is called.

When the handler exits, normal execution continues. The module continues waiting for probes and executing

handler code until the script exits, or until the user presses Ctrl-c, at which time SystemTap removes the

probes, unloads the module, and exits.

Output from SystemTap is transferred from the kernel through a mechanism called relayfs, and sent to STDOUT.

(2) 从用户空间和内核空间来看SystemTap脚本的执行

(3) kprobes

断点指令(breakpoint instruction):__asm INT 3,机器码为CC。

断点中断(INT3)是一种软中断,当执行到INT 3指令时,CPU会把当时的程序指针(CS和EIP)压入堆栈保存起来,

然后通过中断向量表调用INT 3所对应的中断例程。

INT是软中断指令,中断向量表是中断号和中断处理函数地址的对应表。

INT 3即触发软中断3,相应的中断处理函数的地址为:中断向量表地址 + 4 * 3。

A Kprobe is a general purpose hook that can be inserted almost anywhere in the kernel code.

To allow it to probe an instruction, the first byte of the instruction is replaced with the breakpoint

instruction for the architecture being used. When this breakpoint is hit, Kprobe takes over execution,

executes its handler code for the probe, and then continues execution at the next instruction.

(4) 依赖的内核特性

kprobes/jprobes

return probes

reentrancy

colocated (multiple)

relayfs

scalability (unlocked handlers)

user-space probes

内核调试神器SystemTap — 更多功能与原理(三),布布扣,bubuko.com

时间: 2024-10-11 03:29:58

内核调试神器SystemTap — 更多功能与原理(三)的相关文章

内核调试神器SystemTap — 简介与使用(一)

a linux trace/probe tool. 官网:https://sourceware.org/systemtap/ 简介 SystemTap是我目前所知的最强大的内核调试工具,有些家伙甚至说它无所不能:) (1) 发展历程 Debuted in 2005 in Red Hat Enterprise Linux 4 Update 2 as a technology preview. After four years in development, System 1.0 was relea

内核调试神器SystemTap — 探测点与语法(二)

a linux trace/probe tool. 官网:https://sourceware.org/systemtap/ 探测点 SystemTap脚本主要是由探测点和探测点处理函数组成的,来看下都有哪些探测点可用. The essential idea behind a systemtap script is to name events, and to give them handlers. Systemtap works by translating the script to C,

内核调试神器SystemTap — 简单介绍与使用(一)

a linux trace/probe tool. 官网:https://sourceware.org/systemtap/ 简单介绍 SystemTap是我眼下所知的最强大的内核调试工具,有些家伙甚至说它无所不能:) (1) 发展历程 Debuted in 2005 in Red Hat Enterprise Linux 4 Update 2 as a technology preview. After four years in development, System 1.0 was rel

Linux内核调试的方式以及工具集锦

CSDN GitHub Linux内核调试的方式以及工具集锦 LDD-LinuxDeviceDrivers/study/debug 本作品采用知识共享署名-非商业性使用-相同方式共享 4.0 国际许可协议进行许可, 转载请注明出处, 谢谢合作 因本人技术水平和知识面有限, 内容如有纰漏或者需要修正的地方, 欢迎大家指正, 也欢迎大家提供一些其他好的调试工具以供收录, 鄙人在此谢谢啦 "调试难度本来就是写代码的两倍. 因此, 如果你写代码的时候聪明用尽, 根据定义, 你就没有能耐去调试它了.&qu

Linux Kernel - Debug Guide (Linux内核调试指南 )

http://blog.csdn.net/blizmax6/article/details/6747601 linux内核调试指南 一些前言 作者前言 知识从哪里来 为什么撰写本文档 为什么需要汇编级调试 ***第一部分:基础知识*** 总纲:内核世界的陷阱 源码阅读的陷阱 代码调试的陷阱 原理理解的陷阱 建立调试环境 发行版的选择和安装 安装交叉编译工具 bin工具集的使用 qemu的使用 initrd.img的原理与制作 x86虚拟调试环境的建立 arm虚拟调试环境的建立 arm开发板调试环

linux内核调试指南

linux内核调试指南 一些前言 作者前言 知识从哪里来 为什么撰写本文档 为什么需要汇编级调试 ***第一部分:基础知识*** 总纲:内核世界的陷阱 源码阅读的陷阱 代码调试的陷阱 原理理解的陷阱 建立调试环境 发行版的选择和安装 安装交叉编译工具 bin工具集的使用 qemu的使用 initrd.img的原理与制作 x86虚拟调试环境的建立 arm虚拟调试环境的建立 arm开发板调试环境的建立 gdb基础 基本命令 gdb之gui gdb技巧 gdb宏 汇编基础--X86篇 用户手册 AT&

【转】段错误调试神器 - Core Dump详解

from:http://www.embeddedlinux.org.cn/html/jishuzixun/201307/08-2594.html 段错误调试神器 - Core Dump详解 来源:互联网 作者:Alex 时间:2013-07-08 Tag:Linux   点击: 11670 一.前言: 有的程序可以通过编译, 但在运行时会出现Segment fault(段错误). 这通常都是指针错误引起的. 但这不像编译错误一样会提示到文件某一行, 而是没有任何信息, 使得我们的调试变得困难起来

Linux内核调试方法总结

一  调试前的准备 二  内核中的bug 三  内核调试配置选项 1  内核配置 2  调试原子操作 四  引发bug并打印信息 1  BUG()和BUG_ON() 2  dump_stack() 五  printk() 1  printk函数的健壮性 2  printk函数脆弱之处 3  LOG等级 4  记录缓冲区 5  syslogd/klogd 6  dmesg 7 注意 8 内核printk和日志系统的总体结构 9  动态调试 六  内存调试工具 1  MEMWATCH 2  YAMD

内核探测工具systemtap简介【转】

转自:http://www.cnblogs.com/hazir/p/systemtap_introduction.html systemtap是内核开发者必须要掌握的一个工具,本文我将简单介绍一下此工具,后续将会有系列文章介绍systemtap的用法. 什么是systemtap 假如现在有这么一个需求:需要获取正在运行的 Linux 系统的信息,如我想知道系统什么时候发生系统调用,发生的是什么系统调用等这些信息,有什么解决方案呢? 最原始的方法是,找到内核系统调用的代码,加上我们需要获得信息的代