1221 - Travel Company
PDF (English) | Statistics | Forum |
Time Limit: 2 second(s) | Memory Limit: 32 MB |
A travel company is planning to launch their bus service in a new route. So they conducted a survey and made a list of all possible roads connecting different cities. Each of the roads has a certain amount of income based on current fare. But at the same
time, each road has some expenses too (this includes fuel and maintenance cost, staff payments, taxes and tribute to labor union which is recently approved by the Government). The travel company is looking for a cyclic route. That is, the bus will start from
any city, then visit one or more cities each exactly once and return to the starting city. The company is also concerned with the profit on the route. In fact the directors of the company have a strict requirement of a profit ratio strictly greater than P.
Otherwise they will not launch the service. A profit ratio for a route is the ratio between the total incomes to the total expenses for that route.
One of your friends works in that company and he asks for a little help from you. All you have to do is to determine if there exists such route, so that the company has a profit ratio of P.
Input
Input starts with an integer T (≤ 100), denoting the number of test cases.
Each case starts with a blank line and three integers N, R, P (2 ≤ N ≤ 100, 0 ≤ R ≤ 9900, 1 ≤ P ≤ 100). N, R and Prepresents number of cities, number of road links and the expected profit
ratio respectively. Then R lines follow. Each line contains four integers Ai, Bi, Ii, Ei (0 ≤ Ai, Bi < N, 0 ≤ Ii ≤ 5000, 1 ≤ Ei ≤ 5000). (Ai,
Bi) represents directed road link from city Ai to Bi. Ii and Ei are the incomes and expenses of the road link respectively.
You may assume that (Ai, Bi) ≠ (Aj, Bj), if i ≠ j and Ai ≠ Bi for any i.
Output
For each case, print the case number and "YES" if there is a cyclic route for which the profit ratio is greater than P or "NO", if there is no such route.
Sample Input |
Output for Sample Input |
3 5 8 3 0 1 17 8 1 0 10 5 1 2 11 5 1 4 5 3 2 3 13 7 3 1 9 4 4 3 11 1 3 0 11 6 5 8 3 0 1 17 8 1 0 10 5 1 2 11 5 1 4 5 3 2 3 13 7 3 1 9 4 4 3 11 2 3 0 11 6 5 8 2 0 1 17 8 1 0 10 5 1 2 11 5 1 4 5 3 2 3 13 7 3 1 9 4 4 3 11 5 3 0 11 6 |
Case 1: YES Case 2: NO Case 3: YES |
首先申明这道题是看的scf的题意,一开始没读懂题,结果直接抄袭人家题意,敲了个spfa,忘了初始化vector调了一下午没弄好。。晚上认真读了一遍英语,仔细一想这题真的是很巧妙,题意:旅游公司推出了一种新的旅游路线,这里有n个城市,编号为0--n-1,有m条路线,每行输入u v in out 4个变量,u v 代表编号为u和v的两个城市相连,in代表旅游公司在这条路线上的收入,out代表支出,最开始一行给出一个利润率p(收入/支出),公司要求找到一条循环路线(即一个环),使得总利率大于p;
我们可以根据题意写出这么一条原始的公式:(in[0]+in[1]+....in[k])/(out[0]+out[1]+...out[k])>p 即 p*(out[0]+out[1]+...out[k])<(in[0]+in[1]+....in[k]),总结一下就是对于这个环中的任意一条边,都要求
p*out[k]-in[k]<0 即在图中存在负环,证明完毕。
用spfa判负环要注意要以每个点为起点判一遍(如果存在负环可以直接退出),判负环的原理是只要有一个点入队次数大于n(点的总个数),则存在负环。因为最短路最多对边松弛n-1次就可以求出来,如果一个点入队次数大于n,说明一定存在负环,即不存在最短路。
#include <cstdio> #include <iostream> #include <cstring> #include <cctype> #include <cstdlib> #include <algorithm> #include <vector> #include <queue> #include <stack> #include <set> #include <map> #include <list> using namespace std; const int maxn=50100; const int INF=0x3f3f3f3f; int n,m,dis[maxn],vis[maxn],intime[maxn]; vector < pair<int,int> > eg[maxn]; int spfa(int src) { queue <int> Q; memset(dis,INF,sizeof(dis)); memset(vis,0,sizeof(vis)); memset(intime,0,sizeof(intime)); dis[src]=0; Q.push(src); while(!Q.empty()) { int u=Q.front();Q.pop(); vis[u]=0;intime[u]++; if(intime[u]>n) return 1; int len=eg[u].size(); for(int i=0;i<len;i++) { int v=eg[u][i].first; int w=eg[u][i].second; if(dis[v]>dis[u]+w) { dis[v]=dis[u]+w; if(!vis[v]) { vis[v]=1; Q.push(v); } } } } return 0; } int main() { int T,p,cas=1; scanf("%d",&T); while(T--){ scanf("%d%d%d",&n,&m,&p); for(int i=0;i<=n;i++) eg[i].clear(); while(m--) { int u,v,in,out; scanf("%d%d%d%d",&u,&v,&in,&out); int tem=out*p-in; eg[u].push_back(make_pair(v,tem)); } printf("Case %d: ",cas++); int flag=1; for(int i=0;i<n;i++) { if(spfa(i)) { flag=0; printf("YES\n"); break; } } if(flag) printf("NO\n"); } return 0; }