kafka 官方示例代码--消费者

kafka 0.9.0添加了一套新的Java 消费者API,用以替换之前的high-level API (基于ZK) 和low-level API。新的Java消费者API目前为测试版。另外kafka 0.9暂时还支持0.8的Client。

1、High Level Consumer(0.8)

package com.test.groups;

import kafka.consumer.ConsumerConfig;
import kafka.consumer.KafkaStream;
import kafka.javaapi.consumer.ConsumerConnector;

import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

public class ConsumerGroupExample {
    private final ConsumerConnector consumer;
    private final String topic;
    private  ExecutorService executor;

    public ConsumerGroupExample(String a_zookeeper, String a_groupId, String a_topic) {
        consumer = kafka.consumer.Consumer.createJavaConsumerConnector(
                createConsumerConfig(a_zookeeper, a_groupId));
        this.topic = a_topic;
    }

    public void shutdown() {
        if (consumer != null) consumer.shutdown();
        if (executor != null) executor.shutdown();
        try {
            if (!executor.awaitTermination(5000, TimeUnit.MILLISECONDS)) {
                System.out.println("Timed out waiting for consumer threads to shut down, exiting uncleanly");
            }
        } catch (InterruptedException e) {
            System.out.println("Interrupted during shutdown, exiting uncleanly");
        }
   }

    public void run(int a_numThreads) {
        Map<String, Integer> topicCountMap = new HashMap<String, Integer>();
        topicCountMap.put(topic, new Integer(a_numThreads));
        Map<String, List<KafkaStream<byte[], byte[]>>> consumerMap = consumer.createMessageStreams(topicCountMap);
        List<KafkaStream<byte[], byte[]>> streams = consumerMap.get(topic);

        // now launch all the threads
        //
        executor = Executors.newFixedThreadPool(a_numThreads);

        // now create an object to consume the messages
        //
        int threadNumber = 0;
        for (final KafkaStream stream : streams) {
            executor.submit(new ConsumerTest(stream, threadNumber));
            threadNumber++;
        }
    }

    private static ConsumerConfig createConsumerConfig(String a_zookeeper, String a_groupId) {
        Properties props = new Properties();
        props.put("zookeeper.connect", a_zookeeper);
        props.put("group.id", a_groupId);
        props.put("zookeeper.session.timeout.ms", "400");
        props.put("zookeeper.sync.time.ms", "200");
        props.put("auto.commit.interval.ms", "1000");

        return new ConsumerConfig(props);
    }

    public static void main(String[] args) {
        String zooKeeper = args[0];
        String groupId = args[1];
        String topic = args[2];
        int threads = Integer.parseInt(args[3]);

        ConsumerGroupExample example = new ConsumerGroupExample(zooKeeper, groupId, topic);
        example.run(threads);

        try {
            Thread.sleep(10000);
        } catch (InterruptedException ie) {

        }
        example.shutdown();
    }
}

package com.test.groups;

import kafka.consumer.ConsumerIterator;
import kafka.consumer.KafkaStream;

public class ConsumerTest implements Runnable {
    private KafkaStream m_stream;
    private int m_threadNumber;

    public ConsumerTest(KafkaStream a_stream, int a_threadNumber) {
        m_threadNumber = a_threadNumber;
        m_stream = a_stream;
    }

    public void run() {
        ConsumerIterator<byte[], byte[]> it = m_stream.iterator();
        while (it.hasNext())
            System.out.println("Thread " + m_threadNumber + ": " + new String(it.next().message()));
        System.out.println("Shutting down Thread: " + m_threadNumber);
    }
}

2、low-level SimpleConsumer(0.8)

package com.test.simple;

import kafka.api.FetchRequest;
import kafka.api.FetchRequestBuilder;
import kafka.api.PartitionOffsetRequestInfo;
import kafka.common.ErrorMapping;
import kafka.common.TopicAndPartition;
import kafka.javaapi.*;
import kafka.javaapi.consumer.SimpleConsumer;
import kafka.message.MessageAndOffset;

import java.nio.ByteBuffer;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

public class SimpleExample {
    public static void main(String args[]) {
        SimpleExample example = new SimpleExample();
        long maxReads = Long.parseLong(args[0]);
        String topic = args[1];
        int partition = Integer.parseInt(args[2]);
        List<String> seeds = new ArrayList<String>();
        seeds.add(args[3]);
        int port = Integer.parseInt(args[4]);
        try {
            example.run(maxReads, topic, partition, seeds, port);
        } catch (Exception e) {
            System.out.println("Oops:" + e);
             e.printStackTrace();
        }
    }

    private List<String> m_replicaBrokers = new ArrayList<String>();

    public SimpleExample() {
        m_replicaBrokers = new ArrayList<String>();
    }

    public void run(long a_maxReads, String a_topic, int a_partition, List<String> a_seedBrokers, int a_port) throws Exception {
        // find the meta data about the topic and partition we are interested in
        //
        PartitionMetadata metadata = findLeader(a_seedBrokers, a_port, a_topic, a_partition);
        if (metadata == null) {
            System.out.println("Can‘t find metadata for Topic and Partition. Exiting");
            return;
        }
        if (metadata.leader() == null) {
            System.out.println("Can‘t find Leader for Topic and Partition. Exiting");
            return;
        }
        String leadBroker = metadata.leader().host();
        String clientName = "Client_" + a_topic + "_" + a_partition;

        SimpleConsumer consumer = new SimpleConsumer(leadBroker, a_port, 100000, 64 * 1024, clientName);
        long readOffset = getLastOffset(consumer,a_topic, a_partition, kafka.api.OffsetRequest.EarliestTime(), clientName);

        int numErrors = 0;
        while (a_maxReads > 0) {
            if (consumer == null) {
                consumer = new SimpleConsumer(leadBroker, a_port, 100000, 64 * 1024, clientName);
            }
            FetchRequest req = new FetchRequestBuilder()
                    .clientId(clientName)
                    .addFetch(a_topic, a_partition, readOffset, 100000) // Note: this fetchSize of 100000 might need to be increased if large batches are written to Kafka
                    .build();
            FetchResponse fetchResponse = consumer.fetch(req);

            if (fetchResponse.hasError()) {
                numErrors++;
                // Something went wrong!
                short code = fetchResponse.errorCode(a_topic, a_partition);
                System.out.println("Error fetching data from the Broker:" + leadBroker + " Reason: " + code);
                if (numErrors > 5) break;
                if (code == ErrorMapping.OffsetOutOfRangeCode())  {
                    // We asked for an invalid offset. For simple case ask for the last element to reset
                    readOffset = getLastOffset(consumer,a_topic, a_partition, kafka.api.OffsetRequest.LatestTime(), clientName);
                    continue;
                }
                consumer.close();
                consumer = null;
                leadBroker = findNewLeader(leadBroker, a_topic, a_partition, a_port);
                continue;
            }
            numErrors = 0;

            long numRead = 0;
            for (MessageAndOffset messageAndOffset : fetchResponse.messageSet(a_topic, a_partition)) {
                long currentOffset = messageAndOffset.offset();
                if (currentOffset < readOffset) {
                    System.out.println("Found an old offset: " + currentOffset + " Expecting: " + readOffset);
                    continue;
                }
                readOffset = messageAndOffset.nextOffset();
                ByteBuffer payload = messageAndOffset.message().payload();

                byte[] bytes = new byte[payload.limit()];
                payload.get(bytes);
                System.out.println(String.valueOf(messageAndOffset.offset()) + ": " + new String(bytes, "UTF-8"));
                numRead++;
                a_maxReads--;
            }

            if (numRead == 0) {
                try {
                    Thread.sleep(1000);
                } catch (InterruptedException ie) {
                }
            }
        }
        if (consumer != null) consumer.close();
    }

    public static long getLastOffset(SimpleConsumer consumer, String topic, int partition,
                                     long whichTime, String clientName) {
        TopicAndPartition topicAndPartition = new TopicAndPartition(topic, partition);
        Map<TopicAndPartition, PartitionOffsetRequestInfo> requestInfo = new HashMap<TopicAndPartition, PartitionOffsetRequestInfo>();
        requestInfo.put(topicAndPartition, new PartitionOffsetRequestInfo(whichTime, 1));
        kafka.javaapi.OffsetRequest request = new kafka.javaapi.OffsetRequest(
                requestInfo, kafka.api.OffsetRequest.CurrentVersion(), clientName);
        OffsetResponse response = consumer.getOffsetsBefore(request);

        if (response.hasError()) {
            System.out.println("Error fetching data Offset Data the Broker. Reason: " + response.errorCode(topic, partition) );
            return 0;
        }
        long[] offsets = response.offsets(topic, partition);
        return offsets[0];
    }

    private String findNewLeader(String a_oldLeader, String a_topic, int a_partition, int a_port) throws Exception {
        for (int i = 0; i < 3; i++) {
            boolean goToSleep = false;
            PartitionMetadata metadata = findLeader(m_replicaBrokers, a_port, a_topic, a_partition);
            if (metadata == null) {
                goToSleep = true;
            } else if (metadata.leader() == null) {
                goToSleep = true;
            } else if (a_oldLeader.equalsIgnoreCase(metadata.leader().host()) && i == 0) {
                // first time through if the leader hasn‘t changed give ZooKeeper a second to recover
                // second time, assume the broker did recover before failover, or it was a non-Broker issue
                //
                goToSleep = true;
            } else {
                return metadata.leader().host();
            }
            if (goToSleep) {
                try {
                    Thread.sleep(1000);
                } catch (InterruptedException ie) {
                }
            }
        }
        System.out.println("Unable to find new leader after Broker failure. Exiting");
        throw new Exception("Unable to find new leader after Broker failure. Exiting");
    }

    private PartitionMetadata findLeader(List<String> a_seedBrokers, int a_port, String a_topic, int a_partition) {
        PartitionMetadata returnMetaData = null;
        loop:
        for (String seed : a_seedBrokers) {
            SimpleConsumer consumer = null;
            try {
                consumer = new SimpleConsumer(seed, a_port, 100000, 64 * 1024, "leaderLookup");
                List<String> topics = Collections.singletonList(a_topic);
                TopicMetadataRequest req = new TopicMetadataRequest(topics);
                kafka.javaapi.TopicMetadataResponse resp = consumer.send(req);

                List<TopicMetadata> metaData = resp.topicsMetadata();
                for (TopicMetadata item : metaData) {
                    for (PartitionMetadata part : item.partitionsMetadata()) {
                        if (part.partitionId() == a_partition) {
                            returnMetaData = part;
                            break loop;
                        }
                    }
                }
            } catch (Exception e) {
                System.out.println("Error communicating with Broker [" + seed + "] to find Leader for [" + a_topic
                        + ", " + a_partition + "] Reason: " + e);
            } finally {
                if (consumer != null) consumer.close();
            }
        }
        if (returnMetaData != null) {
            m_replicaBrokers.clear();
            for (kafka.cluster.Broker replica : returnMetaData.replicas()) {
                m_replicaBrokers.add(replica.host());
            }
        }
        return returnMetaData;
    }
}

 3、New Consumer API

依赖包

<dependency>
    <groupId>org.apache.kafka</groupId>
    <artifactId>kafka-clients</artifactId>
    <version>0.9.0.0</version>
</dependency>

3.1 自动提交offset到zk

Properties props = new Properties();
 props.put("bootstrap.servers", "localhost:9092");
 props.put("group.id", "test");
 props.put("enable.auto.commit", "true");
 props.put("auto.commit.interval.ms", "1000");
 props.put("session.timeout.ms", "30000");
 props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
 props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
 KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
 consumer.subscribe(Arrays.asList("foo", "bar"));
 while (true) {
     ConsumerRecords<String, String> records = consumer.poll(100);
     for (ConsumerRecord<String, String> record : records)
         System.out.printf("offset = %d, key = %s, value = %s", record.offset(), record.key(), record.value());
 }

3.2 手动控制offset

Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
props.put("group.id", "test");
props.put("enable.auto.commit", "false");
props.put("auto.commit.interval.ms", "1000");
props.put("session.timeout.ms", "30000");
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
consumer.subscribe(Arrays.asList("foo", "bar"));
final int minBatchSize = 200;
List<ConsumerRecord<String, String>> buffer = new ArrayList<>();
while (true) {
 ConsumerRecords<String, String> records = consumer.poll(100);
 for (ConsumerRecord<String, String> record : records) {
     buffer.add(record);
 }
 if (buffer.size() >= minBatchSize) {
     insertIntoDb(buffer);
     consumer.commitSync();
     buffer.clear();
 }
}

try {
         while(running) {
             ConsumerRecords<String, String> records = consumer.poll(Long.MAX_VALUE);
             for (TopicPartition partition : records.partitions()) {
                 List<ConsumerRecord<String, String>> partitionRecords = records.records(partition);
                 for (ConsumerRecord<String, String> record : partitionRecords) {
                     System.out.println(record.offset() + ": " + record.value());
                 }
                 long lastOffset = partitionRecords.get(partitionRecords.size() - 1).offset();
                 consumer.commitSync(Collections.singletonMap(partition, new OffsetAndMetadata(lastOffset + 1)));
             }
         }
     } finally {
       consumer.close();
     }

3.3 多线程

public class KafkaConsumerRunner implements Runnable {
     private final AtomicBoolean closed = new AtomicBoolean(false);
     private final KafkaConsumer consumer;

     public void run() {
         try {
             consumer.subscribe(Arrays.asList("topic"));
             while (!closed.get()) {
                 ConsumerRecords records = consumer.poll(10000);
                 // Handle new records
             }
         } catch (WakeupException e) {
             // Ignore exception if closing
             if (!closed.get()) throw e;
         } finally {
             consumer.close();
         }
     }

     // Shutdown hook which can be called from a separate thread
     public void shutdown() {
         closed.set(true);
         consumer.wakeup();
     }
 }

Then in a separate thread, the consumer can be shutdown by setting the closed flag and waking up the consumer.
     closed.set(true);
     consumer.wakeup();

 

时间: 2024-10-10 02:01:57

kafka 官方示例代码--消费者的相关文章

微信小程序「官方示例代码」剖析【下】:运行机制

在上一篇<微信小程序「官方示例代码」浅析[上]>中,我们只是简单的罗列了一下代码,这一篇,让我们来玩点刺激的--就是看看IDE的代码,了解它是怎么运行的. 还好微信的开发团队在软件工程的实践还有待提高,我们才有机会可以深入了解他们的代码--真想建议他们看看Growth的第二部分,构建系统. 解压应用 首先你需要有下面的工具啦 Mac电脑 微信web开发者工具.app WebStorm / 其他编程器 或 IDE,最好可以支持重命名 首先,我们需要右键微信web开发者工具.app,然后显示包的内

微信小程序「官方示例代码」浅析【上】

从某个微信群里,拿到了这个IDE的下载地址,然后就有了这个: 根本登不上去,怎么办,怎么办呢? 看代码啊... 反正我又没有保密协议,解压缩一看NodeWebkit + React: 好啦 ,逛逛呗,这真是一个庞大的项目: 等等,这里有一个目录是 weapp/quick,这难道就是传说中的源码,打开一看,果然是.. 好了,毫无疑问,某讯又故计重演. html -> wxml css -> wxss app.js里面是登录代码: app.json定义了一些样式,和页面: wxss里面,明显就是c

UICollectionView官方使用示例代码研究

注:这里是iOS6新特征汇总贴链接 iOS6新特征:参考资料和示例汇总 这个链接可以学习到UICollectionView的相关介绍:iOS6新特征:UICollectionView介绍 由于UICollectionView功能比较强大,在此,我们深入学习一下UICollectionView的官方使用示例代码,顺与大家分享一下心得. 一.获取官方示例代码 官方使用示例代码下载地址:如下图所示 下载后,解压将CollectionView目录拖放进一个目录下(如你的文稿目录) 二.加载示例代码 启动

微信公众平台开发(二) 微信公众平台示例代码分析

原文地址:http://www.cnblogs.com/mchina/archive/2013/06/07/3120592.html 一.摘要 微信公众平台提供了一个简单的php示例代码,在做进一步开发之前,我们有必要将其详细了解一下. 二.获取代码 微信官网:http://mp.weixin.qq.com/mpres/htmledition/res/wx_sample.zip 三.分析代码 完整代码如下: <?php /** * wechat php test */ //define your

Kafka JAVA客户端代码示例--高级应用

什么时间使用高级应用? 针对一个消息读取多次 在一个process中,仅仅处理一个topic中的一组partitions 使用事务,确保每个消息只被处理一次 使用高级应用(调用较底层函数)的缺点? SimpleConsumer需要做很多额外的工作(在以groups方式进行消息处理时不需要) 在应用程序中跟踪上次消息处理的offset 确定一个topic partition的lead broker 手工处理broker leander的改变 使用底层函数(SimpleConsumer)开发的步骤

spark streaming 接收 kafka 数据java代码WordCount示例

1. 首先启动zookeeper 2. 启动kafka 3. 核心代码 生产者生产消息的java代码,生成要统计的单词 package streaming; import java.util.Properties; import kafka.javaapi.producer.Producer; import kafka.producer.KeyedMessage; import kafka.producer.ProducerConfig; public class MyProducer { pu

RocketMQ源码分析之从官方示例窥探:RocketMQ事务消息实现基本思想

RocketMQ4.3.0版本开始支持事务消息,后续分享将开始将剖析事务消息的实现原理.首先从官方给出的Demo实例入手,以此通往RocketMQ事务消息的世界中. 官方版本未发布之前,从apache rocketmq第一个版本上线后,代码中存在与事务消息相关的代码,例如COMMIT.ROLLBACK.PREPARED,在事务消息未开源之前网上对于事务消息的"声音"基本上是使用类似二阶段提交,主要是根据消息系统标志MessageSysFlag中定义来推测的: TRANSACTION_P

AppCan移动应用开发平台新增9个超实用插件(内含示例代码)

使用AppCan平台进行移动开发,你所需要具备的是Html5+CSS +JS前端语言基础,此外,Hybrid混合模式应用还需结合原生语言对功能模块进行封装,对于没有原生基础的开发者,如何实现App里包括支付.界面布局.地图导航.IM等功能呢? 这里列出9个AppCan新插件,在使用AppCan平台进行移动开发时非常实用. 1. uexInAppPurchase iOS内部支付IAP插件:封装内部支付IAP相关操作. 方法说明: getProductList 得到产品列表方法 purchase 购

pyspider示例代码二:解析JSON数据

本系列文章主要记录和讲解pyspider的示例代码,希望能抛砖引玉.pyspider示例代码官方网站是http://demo.pyspider.org/.上面的示例代码太多,无从下手.因此本人找出一下比较经典的示例进行简单讲解,希望对新手有一些帮助. 示例说明: pyspider爬取的内容通过回调的参数response返回,response有多种解析方式.1.response.json用于解析json数据2.response.doc返回的是PyQuery对象3.response.etree返回的