Arduino系列之超声波测距模块代码(一)

这里我将简单介绍超声波测距模块

SR04超声波传感器:

是利用超声波特性检测距离的传感器,其带有两个超声波探头,分别用作于发射和接收超声波。范围在3-450cm。

工作原理:

超声波发射器向某一方向发射超声波,在发射的同时开始计时;

超声波在空气中传播,途中遇到障碍物则立即返回,超声波接收器收到反射波则立即停止计时。

声波在空气中传播速度为340m/s,根据计时器记录时间t,即可算出发射点距离障碍物的距离S,

即S=340m/s*t/2,这就是所谓的时间差测距法。

超声波模块的使用及时序图:

使用Arduino的数字引脚给SR04模块的Trig引脚至少10us的高电平信号,触发SR04模块的测距功能。

触发测距功能后,模块会自动发送八个40khz的超声波脉冲,并自动检测是否有信号返回。

若有信号返回,则Echo引脚会输出高电平,高电平持续的时间就是超声波从发射到返回的时间。

此时可以使用pluseIn()函数获取测距结果,并计算出据被测物体的实际距离。

代码:

const int ting=2;             //设定SR04连接到Arduino引脚

const int echo=3;          //设定SR04连接到Arduino引脚

float distance;              //定义一个浮点型的变量

void setup()

{

Serial.begin(9600);            //设置波特率

pinMode(ting,OUTPUT);     //连接SR04的引脚

pinMode(echo,INPUT);       //设置输入状态

Serial.println("ultrasonic sensor");      //

}

void loop()

{

digitalWrite(ting,LOW);                //产生一个10US的高脉冲去触发Trigpin

delayMicroseconds(2);

delayMicroseconds(10);

digitalWrite(ting,LOW);

distance=pluseIn(echo,HIGH)/58.00;     //检测脉冲宽度,并计算出距离

Serial.print(distance);                 //打印

Serial.print("cm");                       //打印

serial.println();                           //打印

delay(1000);

}

时间: 2024-07-31 00:46:18

Arduino系列之超声波测距模块代码(一)的相关文章

[自娱自乐] 3、超声波测距模块DIY笔记(三)

前言 上一节我们已经研究了超声波接收模块并自己设计了一个超声波接收模块,在此基础上又尝试用单片机加反相器构成生成40KHz的超声波发射电路,可是发现采用这种设计的发射电路存在严重的发射功率太低问题,对齐的情况下最多只有10CM.本节主要介绍并制造一种大功率超声波发射装置~ 目录 一.浪里淘金,寻找最简超声波功率提高方案 1.1.优化波形发生程序 1.2.尝试各种其他超声模块方案 1.3.用三极管放大信号 1.4.MAX232放大信号方案 二.步步为营,打造高效准确超声测距算法 2.1.接收MCU

[自娱自乐] 2、超声波测距模块DIY笔记(二)

前言 上一节我们已经大致浏览下目前销售的超声波测距模块同时设计了自己的分析电路,这次由于我买的电子元件都到了,所以就动手实验了下!至写该笔记时已经设计出超声波接收模块和超声波发射模块,同时存在超声波发射模块功率太小的问题,下面主要做该过程的总结! 一.尝试找出一个简单的超声波接收电路: >_<" 首先根据我现有的电子元件,最终找到一个比较适合的简单设计方法:这里用一个芯片CX20106A也就是上一节我说的这种方案简单但是不利于理解超声波接收部分的具体细节!但是为了方便设计,我还是选择

[自娱自乐] 4、超声波测距模块DIY笔记(四)——终结篇&#183;基于C#上位机软件开发

前言 上一节我们已经基本上把超声波硬件的发射和接收模块全部做好了,接下来我们着手开发一个软硬结合的基于C#的平面定位软件! 目录 一.整体思路 二.效果提前展示 2-1.软件部分展示 2-2.硬件部分展示 三.基于C#的客户端软件说明 3-1.整体框架介绍: 3-2.部分技术细节介绍 3-2-1.串口操作 3-2-2.JiSuan函数说明及核心算法介绍 四.阶段小结 五.相关链接 一.整体思路 >_<" 如下图,利用我们上三节开发的超声波发射与接收设备构成一个:2固定接收头+1可移动

数字电路期末课程设计总结(二) ——超声波测距模块

废话不多说. 超声波测距模块有5个引脚,这里我们只用4个. 超声波测距模块引脚如上所示,Trig为触发信号输入,Echo为回响信号输出,这两个引脚为实现测距功能的核心功能引脚. 时序图如下: 超声波模块的工作原理为:采用触发测距,每次触发给至少10μS高电平信号,收到高电平信号后,模块自动发送8个40kHz方波的超声波信号,并自动检测是否有信号返回:若有信号范围,通过Echo输出一个高电平,高电平持续时间就是超声波从发射到返回所用的时间. 由超声波模块工作时序图可以看出,每次测量时,给Trig控

[自娱自乐] 1、超声波测距模块DIY笔记(一)

前言 就像学软件要了解些组成.编译等知识一样,玩硬件如果只用人家封装好的模块,而不了解它们的内部机制,感觉也有点不自在~其实,在很长时间以前就觉得该在模拟电路方面深入点了,可是总是找不到切入点,拿无线电的知识发现根本无法涉足,最近正好由于做一个软硬件结合的“玩具”而引发了必须自己设计传感器的需求,所以就趁势在模拟电路的海洋里遨游下吧,嘿嘿~下面是今天(不,是昨天)做的关于这方面的调查和研究,哈哈,课太多又要把最新版的Ubuntu想方法装进我的老掉牙的只有40G大小的移动硬盘里,结果就忙到了现在~

超声波测距模块

要做的事:两个视频介绍.算坐标 疑问:探测频率.和探测最大耗时.探测最大耗时里面的返回值范围.返回距离比返回时间耗时长(且5m和10m一样) 1.探测频率:500Hz,即每秒500次,一次2ms. 若安装12个,则扫描一圈24ms. 若机器人的速速为1m/s,24ms前进24mm=2.4cm 2.探测时间:传输时间+1ms, 若10m=29ms+1ms=30ms,一圈=30ms*12=360ms=0.36s,机器人前进36cm. 若3m=9ms+1ms=10ms,一圈=10ms*12=120ms

KS103超声波测距模块

max232:电平转换芯片,将电脑的RS-232标准串口(高+12V,低-12V)转换为(高+5V,低0V). 电脑串口(RS -232) => 单片机串口(TTL串口) SIPEX SP3232EEN:西伯斯 KS103超声波测距模块,布布扣,bubuko.com

「51单片机」收发一体超声波测距模块分析+代码

我用的超声波型号是US-020,四个接口的超声波用法基本相同. 一.概述 US-020超声波模块测距范围:2cm~7m 供电电压5V,静态功耗低于3mA 二.实物图 尺寸:45mm*20mm*1.6mm 三.接口 1.VCC 电源,直流5V 2.Trig 向此管脚输入10us以上高电平,可触发模块测距 3.Echo 测距结束时会输出高电平,电平时长为超声波信号往返时间之和 4.GND 接地 四.测距工作原理 只要在Trig管脚输入10us以上高电平,系统会自动发出8个40KHz的超声波脉冲,然后

Arduino 控制超声波测距模块

一.实物图 二.例子代码 用到数字1 和2 引脚,还有两个就是vcc GND两个阴脚,用模块连线比较简单