Luogu P1072 【NOIP2009】 Hankson的趣味题【暴力】

题目描述

Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson。现在,刚刚放学回家的 Hankson 正在思考一个有趣的问题。

今天在课堂上,老师讲解了如何求两个正整数 c1 和 c2 的最大公约数和最小公倍数。现在 Hankson 认为自己已经熟练地掌握了这些知识,他开始思考一个“求公约数”和“求公倍数”之类问题的“逆问题”,这个问题是这样的:已知正整数 a0,a1,b0,b1,设某未知正整数 x 满足:

1.x 和 a0 的最大公约数是 a1;

2.x 和 b0 的最小公倍数是 b1。

Hankson 的“逆问题”就是求出满足条件的正整数 x。但稍加思索之后,他发现这样的x 并不唯一,甚至可能不存在。因此他转而开始考虑如何求解满足条件的 x 的个数。请你帮助他编程求解这个问题。

输入输出格式

输入格式:

第一行为一个正整数 n,表示有 n 组输入数据。接下来的 n 行每行一组输入数据,为四个正整数 a0,a1,b0,b1,每两个整数之间用一个空格隔开。输入数据保证 a0 能被 a1 整除,b1 能被 b0 整除。

输出格式:

输出文件 son.out 共 n 行。每组输入数据的输出结果占一行,为一个整数。

对于每组数据:若不存在这样的 x,请输出 0;

若存在这样的 x,请输出满足条件的 x 的个数;

输入输出样例

输入样例#1:

2
41 1 96 288
95 1 37 1776 

输出样例#1:

6
2

说明

【说明】

第一组输入数据,x 可以是 9、18、36、72、144、288,共有 6 个。

第二组输入数据,x 可以是 48、1776,共有 2 个。

【数据范围】

对于 50%的数据,保证有 1≤a0,a1,b0,b1≤10000 且 n≤100。

对于 100%的数据,保证有 1≤a0,a1,b0,b1≤2,000,000,000 且 n≤2000。

NOIP 2009 提高组 第二题

狂扫+卡常=AC

#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#define lcm(x, y) ((x) / __gcd(x, y) * (y))
#define judge(x) ((x) % a2 == 0 && __gcd(x, a1) == a2 && lcm(x, b1) == b2)
using namespace std;

typedef long long LL;

inline void solve() {
  register LL a1, a2, b1, b2;
  int ans = 0;
  scanf("%lld%lld%lld%lld", &a1, &a2, &b1, &b2);
  for (register LL i = 1; i * i <= b2; i ++)
    if (b2 % i == 0) {
      if (judge(i)) ans ++;
      if (i * i != b2 && judge(b2 / i)) ans ++;
    }
  printf("%d\n", ans);
}

int main() {
  int T;
  scanf("%d", &T);
  while (T --) solve();
  return 0;
}

  

时间: 2024-10-09 20:26:56

Luogu P1072 【NOIP2009】 Hankson的趣味题【暴力】的相关文章

NOIp2009 Hankson 的趣味题

题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现在,刚刚放学回家的 Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲解了如何求两个正整数 c1 和 c2 的最大公约数和最小公倍数.现在 Hankson 认为自己已经熟练地掌握了这些知识,他开始思考一个"求公约数"和"求公倍数"之类问题的"逆问题",这个问题是这样的:已知正整数 a0,a1,b0,b1,设某未知正整数

NOIP2009 Hankson的趣味题

题目描述 Description Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫Hankson.现在,刚刚放学回家的Hankson 正在思考一个有趣的问题.今天在课堂上,老师讲解了如何求两个正整数c1 和c2 的最大公约数和最小公倍数.现在Hankson 认为自己已经熟练地掌握了这些知识,他开始思考一个“求公约数”和“求公倍数”之类问题的“逆问题”,这个问题是这样的:已知正整数a0,a1,b0,b1,设某未知正整数x 满足:1. x 和a0 的最大公约数是a

luogu P1072 Hankson的趣味题

题目链接 luogu P1072 Hankson 的趣味题 题解 啊,还是noip的题好做 额,直接推式子就好了 \(gcd(x,a_0)=a_1=gcd(\frac{x}{a_1},\frac{a_0}{a_1})\) 额....上面这个式子似乎没用,看b的 \(lcm(x,b_0)=\frac{x*b_0}{gcd(x,b_0)}=b1\) 那么\(gcd(x,b_0)=\frac{x*b_0}{b_1}\) \(gcd(\frac{b_1}{b_0},\frac{b_1}{x})=1\)

一本通1626【例 2】Hankson 的趣味题

1626:[例 2]Hankson 的趣味题 题目描述 Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫Hankson.现在,刚刚放学回家的Hankson 正在思考一个有趣的问题.今天在课堂上,老师讲解了如何求两个正整数c1 和c2 的最大公约数和最小公倍数.现在Hankson 认为自己已经熟练地掌握了这些知识,他开始思考一个“求公约数”和“求公倍数”之类问题的“逆问题”,这个问题是这样的:已知正整数a0,a1,b0,b1,设某未知正整数x 满足:1.x 和a

【luogu1072】Hankson 的趣味题 [数学]

P1072 Hankson 的趣味题 枚举gcd(x,b0)判断 1 #include<iostream> 2 #include<cstdio> 3 #include<queue> 4 #include<cstring> 5 #include<cmath> 6 #include<stack> 7 #include<algorithm> 8 using namespace std; 9 #define ll long lon

2009 Hankson 的趣味题

Hankson 的趣味题 题目描述 Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫Hankson.现在,刚刚放学回家的Hankson 正在思考一个有趣的问题.今天在课堂上,老师讲解了如何求两个正整数c1 和c2 的最大公约数和最小公倍数.现在Hankson 认为自己已经熟练地掌握了这些知识,他开始思考一个“求公约数”和“求公倍数”之类问题的“逆问题”,这个问题是这样的:已知正整数a0,a1,b0,b1,设某未知正整数x 满足:1. x 和a0 的最大公约数是

1172 Hankson 的趣味题[数论]

1172 Hankson 的趣味题 2009年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 题目描述 Description Hanks 博士是BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫Hankson.现在,刚刚放学回家的Hankson 正在思考一个有趣的问题.今天在课堂上,老师讲解了如何求两个正整数c1 和c2 的最大公约数和最小公倍数.现在Hankson 认为自己已经熟练地掌握了这些知识,他开始思考一个

Luogu_P1072 Hankson 的趣味题 gcd

Luogu_P1072 Hankson 的趣味题 ### gcd 题目链接 就是求 \(gcd(x,a0)=a1\) \(lcm(x,b0)=b1\) 的\(x\)合法的数量 首先有一个很显然的等式 \(gcd(x/a1,a0/a1)=1\) 可以根据\(gcd\)的性质证出来 那么就剩下另一个等式了 \(lcm(x,b0)=x*b0/gcd(x,b0)\) \(gcd(x,b0)=x*b0/b1\) 再根据第一个性质 \(gcd(x/(x*b0/b1),b0/(x*b0/b1))=gcd(b1

luogu P1072 Hankson 的趣味题

传送门 日渐熟练了 从已知条件搞一搞就可以发现a1|x , x|b1 于是考虑枚举约数 O(sqrt(n)*lgn*T)差不多1e7 被ll卡一波常数 考试的时候实在卡常的话 也一定要看清楚 该开longlong的不能少 Code: 1 #include<cstdio> 2 #include<cstring> 3 #include<algorithm> 4 #include<cmath> 5 #include<queue> 6 #include&