目录
支持向量机原理
支持向量机代码(Spark Python)
支持向量机原理 |
待续...
返回目录
支持向量机代码(Spark Python) |
代码里数据:https://pan.baidu.com/s/1jHWKG4I 密码:acq1
# -*-coding=utf-8 -*- from pyspark import SparkConf, SparkContext sc = SparkContext(‘local‘) from pyspark.mllib.classification import SVMWithSGD, SVMModel from pyspark.mllib.regression import LabeledPoint # Load and parse the data 加载和解析数据,将每一个数转化为浮点数。每一行第一个数作为标记,后面的作为特征 def parsePoint(line): values = [float(x) for x in line.split(‘ ‘)] return LabeledPoint(values[0], values[1:]) data = sc.textFile("data/mllib/sample_svm_data.txt") print data.collect()[0] #1 0 2.52078447201548 0 0 0 2.004684436494304 2.00034729926846..... parsedData = data.map(parsePoint) print parsedData.collect()[0] #(1.0,[0.0,2.52078447202,0.0,0.0,0.0,2.00468.... # Build the model 建立模型 model = SVMWithSGD.train(parsedData, iterations=100) # Evaluating the model on training data 评估模型在训练集上的误差 labelsAndPreds = parsedData.map(lambda p: (p.label, model.predict(p.features))) trainErr = labelsAndPreds.filter(lambda lp: lp[0] != lp[1]).count() / float(parsedData.count()) print("Training Error = " + str(trainErr)) # Save and load model 保存模型和加载模型 model.save(sc, "pythonSVMWithSGDModel") sameModel = SVMModel.load(sc, "pythonSVMWithSGDModel") print sameModel.predict(parsedData.collect()[0].features) #1
返回目录
时间: 2024-10-11 09:25:04