alsa 编程

ALSA(Advanced Linux Sound Architecture)是由内核驱动,标准的API库和一系列实用程序组成.因为涉及到版权和BUG的问题Linux 2.6内核抛弃了旧的OSS,ALSA作为声音编程的生力军被作为了合并到了内核中.

数字音频基础:

音频是由电器设备(麦克风等)将空气的变化转化成的电信号.模数转换器(A/D)将模拟电压转化成一系列不连续的值称之为采样,然后将采样值送往数模转化器(D/A)从而将声音还原.采样的频率是影响数字声音质量的一个关键因素,由Nyquist采样定理知,采样的频率至少是信号中最高频率的2倍方能的还原原始信号.

ALSA基础知识:

ALSA由许多声卡的声卡驱动程序组成,同时它也提供一个称为libasound的API库。应用程序开发者应该使用libasound而不是内核中的ALSA接口。因为libasound提供最高级并且编程方便的编程接口。并且提供一个设备逻辑命名功能,这样开发者甚至不需要知道类似设备文件这样的低层接口。相反,OSS/Free驱动是在内核系统调用级上编程,它要求开发者提供设备文件名并且利用ioctrl来实现相应的功能。为了向后兼容,ALSA提供内核模块来模拟OSS,这样之前的许多在OSS基础上开发的应用程序不需要任何改动就可以在ALSA上运行。另外,libaoss库也可以模拟OSS,而它不需要内核模块。ALSA包含插件功能,使用插件可以扩展新的声卡驱动,包括完全用软件实现的虚拟声卡。ALSA提供一系列基于命令行的工具集,比如混音器(mixer),音频文件播放器(aplay),以及控制特定声卡特定属性的工具.

ALSA接口:

控制接口:用来管理已注册的声卡并检查其可用的设备

PCM接口:用来管理数字音频的录音和回放,这是一个用的最广泛的接口,我们将在下文中着重介绍.

原始 MIDI 接口:支持标准MIDI(Musical Instrument Digital Interface),提供了访问声卡MIDI的接口.

时间接口:用来声卡的计时声音事件的同步

Sequencer接口:高级MIDI和声音合成接口,可以处理更多的MIDI协议

混音接口:用来声卡设备的信号处理和音量,建立在控制接口之上

设备命名:

API库使用逻辑设备名而不是设备文件。设备名字可以是真实的硬件名字也可以是插件名字。硬件名字使用hw:i,j这样的格式。其中i是卡号,j是这块声卡上的设备号。第一个声音设备是hw:0,0.这个别名默认引用第一块声音设备并且在本文示例中一直会被用到。插件使用另外的唯一名字。比如plughw:,表示一个插件,这个插件不提供对硬件设备的访问,而是提供像采样率转换这样的软件特性,硬件本身并不支持这样的特性。

声音缓存和数据传输:

每个声卡都有一个硬件缓存区来保存记录下来的样本。当缓存区足够满时,声卡将产生一个中断。内核声卡驱动然后使用直接内存(DMA)访问通道将样本传送到内存中的应用程序缓存区。类似地,对于回放,任何应用程序使用DMA将自己的缓存区数据传送到声卡的硬件缓存区中。

这样硬件缓存区是环缓存。也就是说当数据到达缓存区末尾时将重新回到缓存区的起始位置。ALSA维护一个指针来指向硬件缓存以及应用程序缓存区中数据操作的当前位置。从内核外部看,我们只对应用程序的缓存区感兴趣,所以本文只讨论应用程序缓存区。

应用程序缓存区的大小可以通过ALSA库函数调用来控制。缓存区可以很大,一次传输操作可能会导致不可接受的延迟,我们把它称为延时(latency)。为了解决这个问题,ALSA将缓存区拆分成一系列周期(period)(OSS/Free中叫片断fragments).ALSA以period为单元来传送数据。

一个周期(period)存储一些帧(frames)。每一帧包含时间上一个点所抓取的样本。对于立体声设备,一个帧会包含两个信道上的样本。图1展示了分解过程:一个缓存区分解成周期,然后是帧,然后是样本。图中包含一些假定的数值。图中左右信道信息被交替地存储在一个帧内。这称为交错(interleaved)模式。在非交错模式中,一个信道的所有样本数据存储在另外一个信道的数据之后。

设置参数,参数设置不当将会导致音频设备无法正常工作。在设置参数前,我们需要了解一下各个参数的含义以及一些基本概念。

样本长度(sample):样本是记录音频数据最基本的单位,常见的有8位和16位。

通道数(channel):该参数为1表示单声道,2则是立体声。

桢(frame):桢记录了一个声音单元,其长度为样本长度与通道数的乘积。

采样率(rate):每秒钟采样次数,该次数是针对桢而言。

周期(period):音频设备一次处理所需要的桢数,对于音频设备的数据访问以及音频数据的存储,都是以此为单位。

一个典型的应用程序:

一个典型的声音程序使用PCM的程序通常类似下面的伪代码:

打开回放或录音接口

设置硬件参数(访问模式,数据格式,信道数,采样率,等等)

while(有数据要被处理)

{

读PCM数据(录音)或 写PCM数据(回放)

}

关闭接口

下面我们介绍声音回放和,录音的例子程序作为对以上内容的总结

/*

alsa_pcm_playback.c

从标准的声音输入设备中声音并写到默认的PCM设备中

*/

#define ALSA_PCM_NEW_HW_PARAMS_API

#include <alsa/asoundlib.h>

int main()

{

long loops;

int rc;

int size;

snd_pcm_t *handle;

snd_pcm_hw_params_t *params;

unsigned int val;

int dir;

snd_pcm_uframes_t frames;

char *buffer;

/* 打开PCM设备用来回放 */

rc = snd_pcm_open(&handle, "default",SND_PCM_STREAM_PLAYBACK, 0);

if (rc < 0)

{

fprintf(stderr,

"unable to open pcm device: %s\n",

snd_strerror(rc));

exit(1);

}

/* Allocate a hardware parameters object. */

snd_pcm_hw_params_alloca(&params);

/* Fill it in with default values. */

snd_pcm_hw_params_any(handle, params);

/* Set the desired hardware parameters. */

/* Interleaved mode */

snd_pcm_hw_params_set_access(handle, params,

SND_PCM_ACCESS_RW_INTERLEAVED);

/* Signed 16-bit little-endian format */

snd_pcm_hw_params_set_format(handle, params,

SND_PCM_FORMAT_S16_LE);

/* Two channels (stereo) */

snd_pcm_hw_params_set_channels(handle, params, 2);

/* 44100 bits/second sampling rate (CD quality) */

val = 44100;

snd_pcm_hw_params_set_rate_near(handle, params,

&val, &dir);

/* Set period size to 32 frames. */

frames = 32;

snd_pcm_hw_params_set_period_size_near(handle,

params, &frames, &dir);

/* Write the parameters to the driver */

rc = snd_pcm_hw_params(handle, params);

if (rc < 0) {

fprintf(stderr,

"unable to set hw parameters: %s\n",

snd_strerror(rc));

exit(1);

}

/* Use a buffer large enough to hold one period */

snd_pcm_hw_params_get_period_size(params, &frames,

&dir);

size = frames * 4; /* 2 bytes/sample, 2 channels */

buffer = (char *) malloc(size);

/* We want to loop for 5 seconds */

snd_pcm_hw_params_get_period_time(params,

&val, &dir);

/* 5 seconds in microseconds divided by

* period time */

loops = 5000000 / val;

while (loops > 0) {

loops--;

rc = read(0, buffer, size);

if (rc == 0) {

fprintf(stderr, "end of file on input\n");

break;

} else if (rc != size) {

fprintf(stderr,

"short read: read %d bytes\n", rc);

}

rc = snd_pcm_writei(handle, buffer, frames);

if (rc == -EPIPE) {

/* EPIPE means underrun */

fprintf(stderr, "underrun occurred\n");

snd_pcm_prepare(handle);

} else if (rc < 0) {

fprintf(stderr,

"error from writei: %s\n",

snd_strerror(rc));

}  else if (rc != (int)frames) {

fprintf(stderr,

"short write, write %d frames\n", rc);

}

}

snd_pcm_drain(handle);

snd_pcm_close(handle);

free(buffer);

return 0;

}

/*

Example 4 - Simple sound recording

alsa_pcm_record.c

读PCM设备到标准的输出中

This example reads from the default PCM device

and writes to standard output for 5 seconds of data.

*/

/* Use the newer ALSA API */

#define ALSA_PCM_NEW_HW_PARAMS_API

#include <alsa/asoundlib.h>

int main() {

long loops;

int rc;

int size;

snd_pcm_t *handle;

snd_pcm_hw_params_t *params;

unsigned int val;

int dir;

snd_pcm_uframes_t frames;

char *buffer;

/* Open PCM device for recording (capture). */

rc = snd_pcm_open(&handle, "default",

SND_PCM_STREAM_CAPTURE, 0);

if (rc < 0) {

fprintf(stderr,

"unable to open pcm device: %s\n",

snd_strerror(rc));

exit(1);

}

/* Allocate a hardware parameters object. */

snd_pcm_hw_params_alloca(&params);

/* Fill it in with default values. */

snd_pcm_hw_params_any(handle, params);

/* Set the desired hardware parameters. */

/* Interleaved mode */

snd_pcm_hw_params_set_access(handle, params,

SND_PCM_ACCESS_RW_INTERLEAVED);

/* Signed 16-bit little-endian format */

snd_pcm_hw_params_set_format(handle, params,

SND_PCM_FORMAT_S16_LE);

/* Two channels (stereo) */

snd_pcm_hw_params_set_channels(handle, params, 2);

/* 44100 bits/second sampling rate (CD quality) */

val = 44100;

snd_pcm_hw_params_set_rate_near(handle, params,

&val, &dir);

/* Set period size to 32 frames. */

frames = 32;

snd_pcm_hw_params_set_period_size_near(handle,

params, &frames, &dir);

/* Write the parameters to the driver */

rc = snd_pcm_hw_params(handle, params);

if (rc < 0) {

fprintf(stderr,

"unable to set hw parameters: %s\n",

snd_strerror(rc));

exit(1);

}

/* Use a buffer large enough to hold one period */

snd_pcm_hw_params_get_period_size(params,

&frames, &dir);

size = frames * 4; /* 2 bytes/sample, 2 channels */

buffer = (char *) malloc(size);

/* We want to loop for 5 seconds */

snd_pcm_hw_params_get_period_time(params,

&val, &dir);

loops = 5000000 / val;

while (loops > 0) {

loops--;

rc = snd_pcm_readi(handle, buffer, frames);

if (rc == -EPIPE) {

/* EPIPE means overrun */

fprintf(stderr, "overrun occurred\n");

snd_pcm_prepare(handle);

} else if (rc < 0) {

fprintf(stderr,

"error from read: %s\n",

snd_strerror(rc));

} else if (rc != (int)frames) {

fprintf(stderr, "short read, read %d frames\n", rc);

}

rc = write(1, buffer, size);

if (rc != size)

fprintf(stderr,

"short write: wrote %d bytes\n", rc);

}

snd_pcm_drain(handle);

snd_pcm_close(handle);

free(buffer);

return 0;

}

./listing4 > sound.raw

./listing3 < sound.raw

http://blog.csdn.net/spygg/article/details/7824750

时间: 2024-07-30 10:17:16

alsa 编程的相关文章

ALSA声音编程

1. ALSA设备驱动将ALSA设备描述分为四层,从上到下为: default default:0 plughw:0,0 hw:0,0 不同的层次,对设备的控制权限不同,比如hardware parameters 的period/buffer size 需要在plughw:0,0 和 hw:0,0 这两层才会作用. 2. Hardware Parameters && Software Parameters 对alsa-core设置,叫做Software Parameters,而对audio

ALSA安装编程指南

 ALSA全指南 一.什么是ALSA ALSA是Advanced Linux Sound Architecture,高级Linux声音架构的简称,它在Linux操作系统上提供了音频和MIDI(MusicalInstrument Digital Interface,音乐设备数字化接口)的支持.在2.6系列内核中,ALSA已经成为默认的声音子系统,用来替换2.4系列内核中的OSS(Open Sound System,开放声音系统). GNU/Linux系统下三大主流声卡驱动程序集:OSS/Lit

alsa音频驱动科普第一课

做linux音频编程对alsa应该不陌生. 但是对于刚接触这块技术的同学来说是一件困难的事情.原因在于:网上关于alsa的资料太少了,特别国内的资料更是大部分重复.对于初学者来说特别苦恼. 由于笔者经历过一步步摸索的痛苦过程,现在回想起来有些问题当初可以避免的.因此把问题解决方法和经验教训写出来,引以为戒. 写一系列的技术贴与网友们分享. 录音 arecord -D hw:2,0 -f S16_LE -r 44100 -c 2 /root/record.wav 查看音频设备命令arecord:加

Linux音频编程指南

Linux音频编程指南 虽然目前Linux的优势主要体现在网络服务方面,但事实上同样也有着非常丰富的媒体功能,本文就是以多媒体应用中最基本的声音为对象,介绍如何在Linux平台下开发实际的音频应用程序,同时还给出了一些常用的音频编程框架. 一.数字音频 音频信号是一种连续变化的模拟信号,但计算机只能处理和记录二进制的数字信号,由自然音源得到的音频信号必须经过一定的变换,成为数字音频信号之后,才能送到计算机中作进一步的处理. 数字音频系统通过将声波的波型转换成一系列二进制数据,来实现对原始声音的重

嵌入式Linux下ALSA音频架构ALSA-lib移植与编译心得

*************************************************************************************************************************** 作者:EasyWave                                                                   时间:2014.10.25 类别:Linux应用-ALSA音频架构ALSA-lib的移植于编译

Linux音频编程指南(转)

转自: http://www.ibm.com/developerworks/cn/linux/l-audio/ Linux音频编程指南 虽然目前Linux的优势主要体现在网络服务方面,但事实上同样也有着非常丰富的媒体功能,本文就是以多媒体应用中最基本的声音为对象,介绍如何在Linux平台下开发实际的音频应用程序,同时还给出了一些常用的音频编程框架. 1 评论: 肖文鹏 ([email protected]), 自由软件爱好者 2004 年 2 月 01 日 内容 一.数字音频 音频信号是一种连续

Linux音频编程(二)声卡介绍

一.声卡 1.声卡是audio interface,它含有hardware buffer,而这个hardware buffer是在声卡里面,不是内存.声卡的缓存是环状的,则ALSA中是将数据分成连续的片段然后传到按单元片段传输. 2.当我们通过麦克风讲话的声音搜集到声卡里之后,将内存从声卡设备文件中读取声音数据的过程就是录音过程:把内存中的声音数据写入到声卡的设备文件中可以实现音频文件. 3.我们在/dev/snd/目录下用ls命令就可以看到相关的声卡设备. 4.模/数(ADC)转换器将模拟电压

异常笔记--java编程思想

开一个新的系列,主要记一些琐碎的重要的知识点,把书读薄才是目的...特点: 代码少,概念多... 1. 基本概念 异常是在当前环境下无法获得必要的信息来解决这个问题,所以就需要从当前环境跳出,就是抛出异常.抛出异常后发生的几件事: 1.在堆上创建异常对象. 2.当前的执行路径中止                                          3. 当前环境抛出异常对象的引用.                                         4. 异常处理机制接

iOS开发——网络编程OC篇&amp;Socket编程

Socket编程 一.网络各个协议:TCP/IP.SOCKET.HTTP等 网络七层由下往上分别为物理层.数据链路层.网络层.传输层.会话层.表示层和应用层. 其中物理层.数据链路层和网络层通常被称作媒体层,是网络工程师所研究的对象: 传输层.会话层.表示层和应用层则被称作主机层,是用户所面向和关心的内容. http协议   对应于应用层 tcp协议    对应于传输层 ip协议     对应于网络层 三者本质上没有可比性.  何况HTTP协议是基于TCP连接的. TCP/IP是传输层协议,主要