如何求最小三元组距离

题目描述:

  已知三个升序整数数组a[l], b[m]和c[n]。请在三个数组中各找一个元素,使得组成的三元组距离最小。

  三元组的距离定义是:假设a[i]、b[j]和c[k]是一个三元组,那么距离为:Distance = max(|a[i]–b[j]|,|a[i]–c[k]|,|b[j]–c[k]|)请设计一个求最小三元组距离的最优算法,并分析时间复杂度。

  关键公式:max(|a[i]–b[j]|,|a[i]–c[k]|,|b[j]–c[k]|) = (abs(a[i]-b[j])+abs(a[i]-c[k])+abs(b[j]-c[k]))/2

思路:

方法一

  暴力法,三层循环,时间复杂度为O(l*m*n)

方法二:最小距离法

  假设当前遍历到的这三个数组中的元素分别为a[i],b[j],c[k],并且有a[i]<=b[j]<=c[k],则最小距离肯定是D = c[k]-a[i],那么接下来有三种情况:

  1. 接下来求a[i],b[j],c[k+1]的最小距离,因为c[k+1]>=c[k],所以,此时的最小距离为c[k+1]-a[i],肯定大于D
  2. 接下来求a[i],b[j+1],c[k]的最小距离,如果b[j+1]<=c[k],则最小距离不变,如果b[j+1]>c[k],此时的最小距离为b[j+1]-a[i],同样,肯定也是大于D
  3. 接下来求a[i],b[j+1],c[k]的最小距离,如果a[i+1] < c[k] + (c[k]-a[i]),则此时的最小距离显然会小于D.

  所以,我们每次将最小的元素的index加1,才有可能将最小距离更优。所以,整体的思路是开始得出三个数组第一个元素的最小距离,接下来移动最小三个元素中最小元素的下标,与之前得到的最小距离比较,看是否需要更新最小距离,直到遍历完三个数组,时间复杂度为O(l+m+n)

 1 public static int minDistance(int [] a,int [] b, int [] c){
 2     int curDis = 0 ;
 3     int min = 0 ;
 4     int minDis = Integer.MIN_VALUE ;
 5     int i = 0 ;
 6     int j = 0 ;
 7     int k = 0 ;
 8
 9     while(i < a.length && j < b.length && k < c.length){
10         curDis = max(Math.abs(a[i]-b[j]),Math.abs(a[i]-c[k]),Math.abs(b[j]-c[k])) ;
11         if(curDis < minDis){
12             minDis = curDis ;
13         }
14
15         min = min(a[i], b[j], c[k]) ;
16         if(min == a[i]){
17             i++ ;
18         }else if(min == b[j]){
19             j++ ;
20         }else{
21             k++ ;
22         }
23     }
24     return minDis ;
25 }
26
27 private static int max(int a, int b, int c) {
28     int max = a > b ? a : b ;
29     max = max > c ? max : c ;
30     return max ;
31 }
32
33 private static int min(int a, int b, int c) {
34     int min = a < b ? a : b ;
35     min = min < c ? min : c ;
36     return min ;
37 }
时间: 2024-10-16 23:23:42

如何求最小三元组距离的相关文章

阿里巴巴笔试题求最小三元组距离

已知三个升序整数数组a[l], b[m]和c[n].请在三个数组中各找一个元素,是的组成的三元组距离最小.三元组的距离定义是:假设a[i].b[j]和c[k]是一个三元组,那么距离为: Distance = max(|a[ I ] – b[ j ]|, |a[ I ] – c[ k ]|, |b[ j ] – c[ k ]|) 请设计一个求最小三元组距离的最优算法,并分析时间复杂度. #include<iostream> using namespace std; int Max(int a,i

HDU 4312 最小切比雪夫距离-转化成曼哈顿距离再分治

题意:二维空间,n个点,求以某点为起点到各点的最小切比雪夫距离 分析: 上一道题之前已经用"分治"思想在O(n)的时间内求出了n个点,以某点为起点到各点的最小曼哈顿距离,那么我们根据二维空间切比雪夫距离和曼哈顿距离的关系,可以把切比雪夫距离转化成曼哈顿距离,再直接用之前的方法即可. 二维空间: 曼哈顿距离 :d=|x1-x2|+|y1-y2|,到某点的曼哈顿距离为r的点组成一个边长为√2*r的正方形,且边与坐标轴成45度 切比雪夫距离:d=max(|x1-x2|,|y1-y2|),到某

poj3565 Ants km算法求最小权完美匹配,浮点权值

/** 题目:poj3565 Ants km算法求最小权完美匹配,浮点权值. 链接:http://poj.org/problem?id=3565 题意:给定n个白点的二维坐标,n个黑点的二维坐标. 求是否存在n条边,每条边恰好连一个白点,一个黑点,且所有的边不相交. 输出所有黑点连接的白点编号. 思路:最小权完美匹配. 假定有白点1(a1,b1), 2(a2,b2), 黑点3(a3,b3),4(a4,b4); 如果1(a1,b1)与3(a3,b3)相连,2(a2,b2)与4(a4,b4)相连,如

【POJ 2195】 Going Home(KM算法求最小权匹配)

[POJ 2195] Going Home(KM算法求最小权匹配) Going Home Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 20303   Accepted: 10297 Description On a grid map there are n little men and n houses. In each unit time, every little man can move one unit ste

POJ-2195 Going Home---KM算法求最小权值匹配(存负边)

题目链接: https://vjudge.net/problem/POJ-2195 题目大意: 给定一个N*M的地图,地图上有若干个man和house,且man与house的数量一致.man每移动一格需花费$1(即单位费用=单位距离),一间house只能入住一个man.现在要求所有的man都入住house,求最小费用. 思路: KM算法传送门: 理解篇    运用篇 每个man和house建立带权二分图,曼哈顿距离就是边的值,这里要求最小费用,也就是二分图最小权值匹配,但是KM算法求的是二分图最

Bridge Across Islands POJ - 3608 旋转卡壳求凸包最近距离

\(\color{#0066ff}{题目描述}\) 几千年前,有一个小王国位于太平洋的中部.王国的领土由两个分离的岛屿组成.由于洋流的冲击,两个岛屿的形状都变成了凸多边形.王国的国王想建立一座桥来连接这两个岛屿.为了把成本降到最低,国王要求你,主教,找到两个岛屿边界之间最小的距离. \(\color{#0066ff}{输入格式}\) 输入由几个测试用例组成. 每个测试用两个整数n,m(3≤n,m≤10000)开始 接下来的n行中的每一行都包含一对坐标,用来描述顶点在一个凸多边形中的位置. 下一条

HDU 3035 War(对偶图求最小割)

HDU 3035 War 题目链接 题意:根据图那样,给定一个网络,要求阻断s到t,需要炸边的最小代价 思路:显然的最小割,但是也显然的直接建图强行网络流会超时,这题要利用平面图求最小割的方法,把每一块当成一个点,共有边连边,然后每一个路径就是一个割,然后最短路就是最小割了 代码: #include <cstdio> #include <cstring> #include <vector> #include <queue> using namespace s

hdu 3746 Cyclic Nacklace (KMP求最小循环节)

//len-next[len]为最小循环节的长度 # include <stdio.h> # include <algorithm> # include <string.h> using namespace std; int len; char a[100010]; int next[100010]; void Getnext() { int i=0,j=-1; next[0]=-1; while(i<=len) { if(j==-1||a[i]==a[j]) i

LeetCode -- Triangle 路径求最小和( 动态规划问题)

人们常说"细节决定成败". 编码工作中,同样需要关注细节. 本文将给出3个小实例来说明编码中关注细节的重要性,同时给出作者对如何注意编码细节的一点见解(说的不对,请指正). 例1 这个问题如此地显而易见,竟然没有被发现. List<int> numList = new List<int>(); numList.Add(3); numList.Add(1); numList.Add(4); numList.Add(2); numList.Add(5); numLi